# perfect-numbers

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Find a basis for $\Span(S)$, where $S$ is a Set of Four Vectors Find a basis for $\Span(S)$ where $S= \left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} , \begin{bmatrix} -1 \\ -2 \\ -1 \end{bmatrix} , \begin{bmatrix} 2 \\ 6 \\ -2 \end{bmatrix} , \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} \right\}$. Solution. We […]
- The Cyclotomic Field of 8-th Roots of Unity is $\Q(\zeta_8)=\Q(i, \sqrt{2})$ Let $\zeta_8$ be a primitive $8$-th root of unity. Prove that the cyclotomic field $\Q(\zeta_8)$ of the $8$-th root of unity is the field $\Q(i, \sqrt{2})$. Proof. Recall that the extension degree of the cyclotomic field of $n$-th roots of unity is given by […]
- Two Quadratic Fields $\Q(\sqrt{2})$ and $\Q(\sqrt{3})$ are Not Isomorphic Prove that the quadratic fields $\Q(\sqrt{2})$ and $\Q(\sqrt{3})$ are not isomorphic. Hint. Note that any homomorphism between fields over $\Q$ fixes $\Q$ pointwise. Proof. Assume that there is an isomorphism $\phi:\Q(\sqrt{2}) \to \Q(\sqrt{3})$. Let […]
- Finite Group and Subgroup Criteria Let $G$ be a finite group and let $H$ be a subset of $G$ such that for any $a,b \in H$, $ab\in H$. Then show that $H$ is a subgroup of $G$. Proof. Let $a \in H$. To show that $H$ is a subgroup of $G$, it suffices to show that the inverse $a^{-1}$ is in $H$. If […]
- Rank and Nullity of Linear Transformation From $\R^3$ to $\R^2$ Let $T:\R^3 \to \R^2$ be a linear transformation such that \[ T(\mathbf{e}_1)=\begin{bmatrix} 1 \\ 0 \end{bmatrix}, T(\mathbf{e}_2)=\begin{bmatrix} 0 \\ 1 \end{bmatrix}, T(\mathbf{e}_3)=\begin{bmatrix} 1 \\ 0 \end{bmatrix},\] where $\mathbf{e}_1, […]
- Quiz 5: Example and Non-Example of Subspaces in 3-Dimensional Space Problem 1 Let $W$ be the subset of the $3$-dimensional vector space $\R^3$ defined by \[W=\left\{ \mathbf{x}=\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\in \R^3 \quad \middle| \quad 2x_1x_2=x_3 \right\}.\] (a) Which of the following vectors are in the subset […]
- True or False: If $A, B$ are 2 by 2 Matrices such that $(AB)^2=O$, then $(BA)^2=O$ Let $A$ and $B$ be $2\times 2$ matrices such that $(AB)^2=O$, where $O$ is the $2\times 2$ zero matrix. Determine whether $(BA)^2$ must be $O$ as well. If so, prove it. If not, give a counter example. Proof. It is true that the matrix $(BA)^2$ must be the zero […]
- If a Symmetric Matrix is in Reduced Row Echelon Form, then Is it Diagonal? Recall that a matrix $A$ is symmetric if $A^\trans = A$, where $A^\trans$ is the transpose of $A$. Is it true that if $A$ is a symmetric matrix and in reduced row echelon form, then $A$ is diagonal? If so, prove it. Otherwise, provide a counterexample. Proof. […]