Every Basis of a Subspace Has the Same Number of Vectors

Problems and solutions in Linear Algebra

Problem 577

Let $V$ be a subspace of $\R^n$.
Suppose that $B=\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is a basis of the subspace $V$.

Prove that every basis of $V$ consists of $k$ vectors in $V$.

 
LoadingAdd to solve later

Sponsored Links


Hint.

You may use the following fact:

Fact.
If $S=\{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ is a spanning set of a subspace $V$ of $\R^n$, then any set of $m+1$ or more vectors of $V$ is linearly dependent.

For a proof of this fact, see the post ↴
If there are More Vectors Than a Spanning Set, then Vectors are Linearly Dependent

Proof.

Let $B’=\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_l\}$ be an arbitrary basis of the subspace $V$.
Our goal is to show that $l=k$.


As $B$ is a basis, it is a spanning set for $V$ consisting of $k$ vectors.
By the fact stated above, a set of $k+1$ or more vectors of $V$ must be linearly dependent.
Since $B’$ is a basis, it is linearly independent.
It follows that $l\leq k$.


We now change the roles of $B$ and $B’$.
As $B’$ is a basis, it is a spanning set for $V$ consisting of $l$ vectors.
So it follows from Fact that a set of $l+1$ or more vectors must be linearly dependent.
Since $B$ is a basis, it is linearly independent.
Hence $k \leq l$.


Therefore we have $l\leq k$ and $k \leq l$, and it yields that $l=k$, as required.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

1 Response

  1. 10/02/2017

    […] these into one matrix equation, we obtain [VA=U,] where Every Basis of a Subspace Has the Same Number of Vectors [A=begin{bmatrix} a_{1 1} & a_{1 2} & cdots & a_{1 k} \ a_{2 1} & a_{2 2} […]

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
If there are More Vectors Than a Spanning Set, then Vectors are Linearly Dependent

Let $V$ be a subspace of $\R^n$. Suppose that \[S=\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}\] is a spanning set for $V$. Prove...

Close