# vector-space

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Find All Symmetric Matrices satisfying the Equation Find all $2\times 2$ symmetric matrices $A$ satisfying $A\begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$? Express your solution using free variable(s). Solution. Let $A=\begin{bmatrix} a & b\\ c& d \end{bmatrix}$ […]
- An Example of Matrices $A$, $B$ such that $\mathrm{rref}(AB)\neq \mathrm{rref}(A) \mathrm{rref}(B)$ For an $m\times n$ matrix $A$, we denote by $\mathrm{rref}(A)$ the matrix in reduced row echelon form that is row equivalent to $A$. For example, consider the matrix $A=\begin{bmatrix} 1 & 1 & 1 \\ 0 &2 &2 \end{bmatrix}$ Then we have \[A=\begin{bmatrix} 1 & 1 & 1 \\ […]
- Prove that the Center of Matrices is a Subspace Let $V$ be the vector space of $n \times n$ matrices with real coefficients, and define \[ W = \{ \mathbf{v} \in V \mid \mathbf{v} \mathbf{w} = \mathbf{w} \mathbf{v} \mbox{ for all } \mathbf{w} \in V \}.\] The set $W$ is called the center of $V$. Prove that $W$ is a subspace […]
- Eigenvalues and Algebraic/Geometric Multiplicities of Matrix $A+cI$ Let $A$ be an $n \times n$ matrix and let $c$ be a complex number. (a) For each eigenvalue $\lambda$ of $A$, prove that $\lambda+c$ is an eigenvalue of the matrix $A+cI$, where $I$ is the identity matrix. What can you say about the eigenvectors corresponding to […]
- The Rotation Matrix is an Orthogonal Transformation Let $\mathbb{R}^2$ be the vector space of size-2 column vectors. This vector space has an inner product defined by $ \langle \mathbf{v} , \mathbf{w} \rangle = \mathbf{v}^\trans \mathbf{w}$. A linear transformation $T : \R^2 \rightarrow \R^2$ is called an orthogonal transformation if […]
- Rank and Nullity of a Matrix, Nullity of Transpose Let $A$ be an $m\times n$ matrix. The nullspace of $A$ is denoted by $\calN(A)$. The dimension of the nullspace of $A$ is called the nullity of $A$. Prove the followings. (a) $\calN(A)=\calN(A^{\trans}A)$. (b) $\rk(A)=\rk(A^{\trans}A)$. Hint. For part (b), […]
- Inverse Matrix of Positive-Definite Symmetric Matrix is Positive-Definite Suppose $A$ is a positive definite symmetric $n\times n$ matrix. (a) Prove that $A$ is invertible. (b) Prove that $A^{-1}$ is symmetric. (c) Prove that $A^{-1}$ is positive-definite. (MIT, Linear Algebra Exam Problem) Proof. (a) Prove that $A$ is […]
- Galois Group of the Polynomial $x^2-2$ Let $\Q$ be the field of rational numbers. (a) Is the polynomial $f(x)=x^2-2$ separable over $\Q$? (b) Find the Galois group of $f(x)$ over $\Q$. Solution. (a) The polynomial $f(x)=x^2-2$ is separable over $\Q$ The roots of the polynomial $f(x)$ are $\pm […]