# vector-space

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- A Subgroup of Index a Prime $p$ of a Group of Order $p^n$ is Normal Let $G$ be a finite group of order $p^n$, where $p$ is a prime number and $n$ is a positive integer. Suppose that $H$ is a subgroup of $G$ with index $[G:P]=p$. Then prove that $H$ is a normal subgroup of $G$. (Michigan State University, Abstract Algebra Qualifying […]
- Automorphism Group of $\Q(\sqrt[3]{2})$ Over $\Q$. Determine the automorphism group of $\Q(\sqrt[3]{2})$ over $\Q$. Proof. Let $\sigma \in \Aut(\Q(\sqrt[3]{2}/\Q)$ be an automorphism of $\Q(\sqrt[3]{2})$ over $\Q$. Then $\sigma$ is determined by the value $\sigma(\sqrt[3]{2})$ since any element $\alpha$ of $\Q(\sqrt[3]{2})$ […]
- Any Vector is a Linear Combination of Basis Vectors Uniquely Let $B=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a basis for a vector space $V$ over a scalar field $K$. Then show that any vector $\mathbf{v}\in V$ can be written uniquely as \[\mathbf{v}=c_1\mathbf{v}_1+c_2\mathbf{v}_2+c_3\mathbf{v}_3,\] where $c_1, c_2, c_3$ are […]
- Is the Derivative Linear Transformation Diagonalizable? Let $\mathrm{P}_2$ denote the vector space of polynomials of degree $2$ or less, and let $T : \mathrm{P}_2 \rightarrow \mathrm{P}_2$ be the derivative linear transformation, defined by \[ T( ax^2 + bx + c ) = 2ax + b . \] Is $T$ diagonalizable? If so, find a diagonal matrix which […]
- The Matrix $[A_1, \dots, A_{n-1}, A\mathbf{b}]$ is Always Singular, Where $A=[A_1,\dots, A_{n-1}]$ and $\mathbf{b}\in \R^{n-1}$. Let $A$ be an $n\times (n-1)$ matrix and let $\mathbf{b}$ be an $(n-1)$-dimensional vector. Then the product $A\mathbf{b}$ is an $n$-dimensional vector. Set the $n\times n$ matrix $B=[A_1, A_2, \dots, A_{n-1}, A\mathbf{b}]$, where $A_i$ is the $i$-th column vector of […]
- Find a Formula for a Linear Transformation If $L:\R^2 \to \R^3$ is a linear transformation such that \begin{align*} L\left( \begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) =\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \,\,\,\, L\left( \begin{bmatrix} 1 \\ 1 \end{bmatrix}\right) =\begin{bmatrix} 2 \\ 3 […]
- Construction of a Symmetric Matrix whose Inverse Matrix is Itself Let $\mathbf{v}$ be a nonzero vector in $\R^n$. Then the dot product $\mathbf{v}\cdot \mathbf{v}=\mathbf{v}^{\trans}\mathbf{v}\neq 0$. Set $a:=\frac{2}{\mathbf{v}^{\trans}\mathbf{v}}$ and define the $n\times n$ matrix $A$ by \[A=I-a\mathbf{v}\mathbf{v}^{\trans},\] where […]
- True or False. Every Diagonalizable Matrix is Invertible Is every diagonalizable matrix invertible? Solution. The answer is No. Counterexample We give a counterexample. Consider the $2\times 2$ zero matrix. The zero matrix is a diagonal matrix, and thus it is diagonalizable. However, the zero matrix is not […]