Find a Basis and Determine the Dimension of a Subspace of All Polynomials of Degree $n$ or Less

Linear Algebra Problems and Solutions

Problem 137

Let $P_n(\R)$ be the vector space over $\R$ consisting of all degree $n$ or less real coefficient polynomials. Let
\[U=\{ p(x) \in P_n(\R) \mid p(1)=0\}\] be a subspace of $P_n(\R)$.

Find a basis for $U$ and determine the dimension of $U$.

 
LoadingAdd to solve later

Sponsored Links

Solution.

Let $p(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ be an element in $U$.
Since $p(1)=0$, we have $a_n+a_{n-1}+\cdots+a_1+a_0=0$. Thus we have
\begin{align*}
p(x)&=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x-(a_n+a_{n-1}+\cdots+a_1)\\
&=a_n(x^n-1)+a_{n-1}(x^{n-1}-1)+\cdots a_1(x-1).
\end{align*}


Let us define
\[q_n(x)=x^n-1, q_{n-1}(x)=x^{n-1}-1, \dots, q_1(x)=x-1 \in U.\] Then the above computation shows that we have
\[p(x)=a_nq_n(x)+a_{n-1}q_{n-1}(x)+\cdots a_1q_1(x).\] In other words, any element $p(x)\in U$ is a linear combination of $q_1(x), \dots, q_n(x)$.
Hence $B:=\{q_1(x), \dots, q_n(x)\}$ is a spanning set for $U$.


We show that $B$ is a linearly independent set.
Consider a linear combination
\[c_1q_1(x)+\cdots+c_n q_n(x)=\theta(x):=0x^{n}+0x^{n-1}+\cdots+0x+0.\]

Then we have
\begin{align*}
c_nx^n+c_{n-1}x^{n-1}+\cdots+c_1x-(c_1+c_2+\cdots+c_n)=0.
\end{align*}
Comparing the coefficients of both sides, we obtain
\[c_1=c_2=\cdots=c_n=0\] and thus $q_1(x), \dots, q_n(x)$ are linearly independent, and hence $B=\{q_1(x), \dots, q_n(x)\}$ is a basis for the subspace $U$. Since the dimension is the number of vectors in a basis, the dimension of $U$ is $n$.


LoadingAdd to solve later

Sponsored Links

More from my site

  • A Basis for the Vector Space of Polynomials of Degree Two or Less and Coordinate VectorsA Basis for the Vector Space of Polynomials of Degree Two or Less and Coordinate Vectors Show that the set \[S=\{1, 1-x, 3+4x+x^2\}\] is a basis of the vector space $P_2$ of all polynomials of degree $2$ or less.   Proof. We know that the set $B=\{1, x, x^2\}$ is a basis for the vector space $P_2$. With respect to this basis $B$, the coordinate […]
  • Linear Dependent/Independent Vectors of PolynomialsLinear Dependent/Independent Vectors of Polynomials Let $p_1(x), p_2(x), p_3(x), p_4(x)$ be (real) polynomials of degree at most $3$. Which (if any) of the following two conditions is sufficient for the conclusion that these polynomials are linearly dependent? (a) At $1$ each of the polynomials has the value $0$. Namely $p_i(1)=0$ […]
  • Show the Subset of the Vector Space of Polynomials is a Subspace and Find its BasisShow the Subset of the Vector Space of Polynomials is a Subspace and Find its Basis Let $P_3$ be the vector space over $\R$ of all degree three or less polynomial with real number coefficient. Let $W$ be the following subset of $P_3$. \[W=\{p(x) \in P_3 \mid p'(-1)=0 \text{ and } p^{\prime\prime}(1)=0\}.\] Here $p'(x)$ is the first derivative of $p(x)$ and […]
  • Dimension of the Sum of Two SubspacesDimension of the Sum of Two Subspaces Let $U$ and $V$ be finite dimensional subspaces in a vector space over a scalar field $K$. Then prove that \[\dim(U+V) \leq \dim(U)+\dim(V).\]   Definition (The sum of subspaces). Recall that the sum of subspaces $U$ and $V$ is \[U+V=\{\mathbf{x}+\mathbf{y} \mid […]
  • Prove a Given Subset is a Subspace  and Find a Basis and DimensionProve a Given Subset is a Subspace and Find a Basis and Dimension Let \[A=\begin{bmatrix} 4 & 1\\ 3& 2 \end{bmatrix}\] and consider the following subset $V$ of the 2-dimensional vector space $\R^2$. \[V=\{\mathbf{x}\in \R^2 \mid A\mathbf{x}=5\mathbf{x}\}.\] (a) Prove that the subset $V$ is a subspace of $\R^2$. (b) Find a basis for […]
  • Vector Space of Polynomials and Coordinate VectorsVector Space of Polynomials and Coordinate Vectors Let $P_2$ be the vector space of all polynomials of degree two or less. Consider the subset in $P_2$ \[Q=\{ p_1(x), p_2(x), p_3(x), p_4(x)\},\] where \begin{align*} &p_1(x)=x^2+2x+1, &p_2(x)=2x^2+3x+1, \\ &p_3(x)=2x^2, &p_4(x)=2x^2+x+1. \end{align*} (a) Use the basis […]
  • The Subset Consisting of the Zero Vector is a Subspace and its Dimension is ZeroThe Subset Consisting of the Zero Vector is a Subspace and its Dimension is Zero Let $V$ be a subset of the vector space $\R^n$ consisting only of the zero vector of $\R^n$. Namely $V=\{\mathbf{0}\}$. Then prove that $V$ is a subspace of $\R^n$.   Proof. To prove that $V=\{\mathbf{0}\}$ is a subspace of $\R^n$, we check the following subspace […]
  • Linear Transformation and a Basis of the Vector Space $\R^3$Linear Transformation and a Basis of the Vector Space $\R^3$ Let $T$ be a linear transformation from the vector space $\R^3$ to $\R^3$. Suppose that $k=3$ is the smallest positive integer such that $T^k=\mathbf{0}$ (the zero linear transformation) and suppose that we have $\mathbf{x}\in \R^3$ such that $T^2\mathbf{x}\neq \mathbf{0}$. Show […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Problems and solutions in Linear Algebra
Column Rank = Row Rank. (The Rank of a Matrix is the Same as the Rank of its Transpose)

Let $A$ be an $m\times n$ matrix. Prove that the rank of $A$ is the same as the rank of...

Close