Find a Basis and the Dimension of the Subspace of the 4-Dimensional Vector Space Problem 131

Let $V$ be the following subspace of the $4$-dimensional vector space $\R^4$.
$V:=\left\{ \quad\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \R^4 \quad \middle| \quad x_1-x_2+x_3-x_4=0 \quad\right\}.$ Find a basis of the subspace $V$ and its dimension. Add to solve later

Solution.

Any vector $\mathbf{x}=\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$ in $V$ satisfies $x_1-x_2+x_3-x_4=0$, or equivalently $x_1=x_2-x_3+x_4$.

Thus we have
\begin{align*}
\mathbf{x}=\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix}
&=\begin{bmatrix}
x_2-x_3+x_4 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix}\\
&=x_2\begin{bmatrix}
1 \\
1 \\
0 \\
0
\end{bmatrix}
+x_3\begin{bmatrix}
-1 \\
0 \\
1 \\
0
\end{bmatrix}
+x_4\begin{bmatrix}
1 \\
0 \\
0 \\
1
\end{bmatrix}.
\end{align*}

Let
$\mathbf{u}_1=\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{u}_2=\begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \mathbf{u}_3=\begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$ The above computation shows that any vector $\mathbf{x}$ in $V$ can be written as a linear combination of the vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$.
Hence the set $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \}$ is a spanning set for the subspace $V$.

We claim that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \}$ is a linearly independent set.
Consider
$a_1 \mathbf{u}_1+ a_2 \mathbf{u}_2+a_3\mathbf{u}_3 =\mathbf{0} \tag{*}.$ We show that this equation has only the zero solution $a_1=a_2=a_3=0$.
The equation (*) can be written as
$\begin{bmatrix} a_1-a_2+a_3 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}=\mathbf{0}.$ Comparing entries, we obtain $a_1=a_2=a_3=0$.
Thus the equation (*) has only the zero solution and hence the vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are linearly independent.

Therefore, the set $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \}$ is linearly independent spanning set for $V$, thus it is a basis for the subspace $V$.
Since the basis consists of $3$ vectors, the dimension of the subspace $V$ is $3$.

In summary, we found a basis
$\left\{\quad\mathbf{u}_1=\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix},\quad \mathbf{u}_2=\begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix},\quad \mathbf{u}_3=\begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}\quad \right\}.$ for the subspace $V$ and the dimension of $V$ is $3$. Add to solve later

More from my site

You may also like...

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra Find Values of $a$ so that the Matrix is Nonsingular

Let $A$ be the following $3 \times 3$ matrix. \[A=\begin{bmatrix} 1 & 1 & -1 \\ 0 &1 &2 \\...

Close