# Find a Basis for Nullspace, Row Space, and Range of a Matrix ## Problem 704

Let $A=\begin{bmatrix} 2 & 4 & 6 & 8 \\ 1 &3 & 0 & 5 \\ 1 & 1 & 6 & 3 \end{bmatrix}$.
(a) Find a basis for the nullspace of $A$.

(b) Find a basis for the row space of $A$.

(c) Find a basis for the range of $A$ that consists of column vectors of $A$.

(d) For each column vector which is not a basis vector that you obtained in part (c), express it as a linear combination of the basis vectors for the range of $A$. Add to solve later

## Solution.

We first obtain the reduced row echelon form matrix corresponding to the matrix $A$.
We reduce the matrix $A$ as follows:
\begin{align*}
A=\begin{bmatrix}
2 & 4 & 6 & 8 \\
1 &3 & 0 & 5 \\
1 & 1 & 6 & 3
\end{bmatrix}
\xrightarrow{\frac{1}{2}R_1}
\begin{bmatrix}
1 & 2 & 3 & 4 \\
1 &3 & 0 & 5 \\
1 & 1 & 6 & 3
\end{bmatrix}\6pt] \xrightarrow[R_3-R_1]{R_2-R_1} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 &1 & -3 & 1 \\ 0 & -1 & 3 & -1 \end{bmatrix} \xrightarrow[R_3+R_2]{R_1-2R_2} \begin{bmatrix} 1 & 0 & 9 & 2 \\ 0 &1 & -3 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}. \end{align*} The last matrix is in reduced row echelon form. That is, \[\rref(A)=\begin{bmatrix} 1 & 0 & 9 & 2 \\ 0 &1 & -3 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}. \tag{*}

### (a) Find a basis for the nullspace of $A$.

By the computation above, we see that the general solution of $A\mathbf{x}=\mathbf{0}$ is
\begin{align*}
x_1&=-9x_3-2x_4\\
x_2&=3x_3-x_4,
\end{align*}
where $x_3$ and $x_4$ are free variables.
Thus, the vector form solution to $A\mathbf{x}=\mathbf{0}$ is
\begin{align*}
\mathbf{x}=\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix}
=\begin{bmatrix}
-9x_3-2x_4 \\
3x_3-x_4 \\
x_3 \\
x_4
\end{bmatrix}
=x_3\begin{bmatrix}
-9 \\
3 \\
1 \\
0
\end{bmatrix}+x_4\begin{bmatrix}
-2 \\
-1 \\
0 \\
1
\end{bmatrix}.
\end{align*}
It follows that the nullspace of the matrix $A$ is given by
\begin{align*}
-9 \\
3 \\
1 \\
0
\end{bmatrix}+x_4\begin{bmatrix}
-2 \\
-1 \\
0 \\
1
\end{bmatrix}, \text{ for all } x_3, x_4 \in \R^4 \right \}\6pt] &= \Span \left\{ \begin{bmatrix} -9 \\ 3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ -1 \\ 0 \\ 1 \end{bmatrix} \right \}. \end{align*} Thus, the set \[\left\{ \begin{bmatrix} -9 \\ 3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ -1 \\ 0 \\ 1 \end{bmatrix} \right \} is a spanning set for the nullspace $\calN(A)$.
It is straightforward to see that this set is linearly independent, and hence it is a basis for $\calN(A)$.

### (b) Find a basis for the row space of $A$.

Recall that the nonzero rows of $\rref(A)$ form a basis for the row space of $A$. (The row space method.)

Thus,
$\left\{\begin{bmatrix} 1 \\ 0 \\ 9 \\ 2 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ 1 \\ -3 \\ 1 \end{bmatrix} \right \}$ is a basis for the row space of $A$.

### (c) Find a basis for the range of $A$ that consists of column vectors of $A$.

Recall that by the leading 1 method, the columns of $A$ corresponding to columns of $\rref(A)$ that contain leading 1 entries form a basis for the range $\calR(A)$ of $A$.
From (*), we see that the first and the second columns contain the leading 1 entries. Thus,
$\left\{\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \\ 1 \end{bmatrix}\right \}$ is a basis for the range $\calR(A)$ of $A$.

### (d) For each column vector which is not a basis vector that you obtained in part (c), express it as a linear combination of the basis vectors for the range of $A$.

Let us write $A_1, A_2, A_3$, and $A_4$ for the column vectors of the matrix $A$.
In part (c), we showed that $\{A_1, A_2\}$ is a basis for the range $\calR(A)$.
Thus, we need to express the vectors $A_3$ and $A_4$ as a linear combination of $A_1$ and $A_2$, respectively.

A shortcut is to note that the entries of third column vector of $\rref(A)$ give the coefficients of the linear combination for $A_3$. That is, we have
$A_3=9A_1-3A_2.$ Similarly, the entries of the fourth column of $\rref(A)$ yield
$A_4=2A_1+A_2.$ Add to solve later

### More from my site

#### You may also like...

This site uses Akismet to reduce spam. Learn how your comment data is processed.

###### More in Linear Algebra ##### Describe the Range of the Matrix Using the Definition of the Range

Using the definition of the range of a matrix, describe the range of the matrix \[A=\begin{bmatrix} 2 & 4 &...

Close