Find a basis for $\Span(S)$, where $S$ is a Set of Four Vectors

Vector Space Problems and Solutions

Problem 710

Find a basis for $\Span(S)$ where $S=
\left\{
\begin{bmatrix}
1 \\ 2 \\ 1
\end{bmatrix}
,
\begin{bmatrix}
-1 \\ -2 \\ -1
\end{bmatrix}
,
\begin{bmatrix}
2 \\ 6 \\ -2
\end{bmatrix}
,
\begin{bmatrix}
1 \\ 1 \\ 3
\end{bmatrix}
\right\}$.

 
LoadingAdd to solve later

Sponsored Links


Solution.

We will first use the leading $1$ method. Consider the system
\[
x_{1}
\begin{bmatrix}
1 \\ 2 \\ 1
\end{bmatrix}
+x_{2}
\begin{bmatrix}
-1 \\ -2 \\ -1
\end{bmatrix}
+x_{3}
\begin{bmatrix}
2 \\ 6 \\ -2
\end{bmatrix}
+x_{4}
\begin{bmatrix}
1 \\ 1 \\ 3
\end{bmatrix}
=
\begin{bmatrix}
0 \\ 0 \\ 0
\end{bmatrix}
.\] The augmented matrix for this system is
\[
\left[\begin{array}{cccc|c}
1 & -1 & 2 & 1 & 0 \\
2 & -2 & 6 & 1 & 0 \\
1 & -1 & -2 & 3 & 0
\end{array}\right] \xrightarrow{\substack{R_{2}-2R_{1} \\ R_{3}-R_{1}}}
\left[\begin{array}{cccc|c}
1 & -1 & 2 & 1 & 0 \\
0 & 0 & 2 & -1 & 0 \\
0 & 0 & -4 & 2 & 0
\end{array}\right] \] \[
\to
\left[\begin{array}{cccc|c}
1 & -1 & 0 & 2 & 0 \\
0 & 0 & 1 & -1/2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right].
\] Since the above matrix has leading $1$’s in the first and third columns, we can conclude that the first and third vectors of $S$ form a basis of $\Span(S)$. Thus
\[
\left\{
\begin{bmatrix}
1 \\ 2 \\ 1
\end{bmatrix}
,
\begin{bmatrix}
2 \\ 6 \\ -2
\end{bmatrix}
\right\}
\] is a basis for $\Span(S)$.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Find a Basis for the Subspace spanned by Five VectorsFind a Basis for the Subspace spanned by Five Vectors Let $S=\{\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{3},\mathbf{v}_{4},\mathbf{v}_{5}\}$ where \[ \mathbf{v}_{1}= \begin{bmatrix} 1 \\ 2 \\ 2 \\ -1 \end{bmatrix} ,\;\mathbf{v}_{2}= \begin{bmatrix} 1 \\ 3 \\ 1 \\ 1 \end{bmatrix} ,\;\mathbf{v}_{3}= \begin{bmatrix} 1 \\ 5 \\ -1 […]
  • Show the Subset of the Vector Space of Polynomials is a Subspace and Find its BasisShow the Subset of the Vector Space of Polynomials is a Subspace and Find its Basis Let $P_3$ be the vector space over $\R$ of all degree three or less polynomial with real number coefficient. Let $W$ be the following subset of $P_3$. \[W=\{p(x) \in P_3 \mid p'(-1)=0 \text{ and } p^{\prime\prime}(1)=0\}.\] Here $p'(x)$ is the first derivative of $p(x)$ and […]
  • Determine Whether Each Set is a Basis for $\R^3$Determine Whether Each Set is a Basis for $\R^3$ Determine whether each of the following sets is a basis for $\R^3$. (a) $S=\left\{\, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 4 \end{bmatrix} […]
  • Does an Extra Vector Change the Span?Does an Extra Vector Change the Span? Suppose that a set of vectors $S_1=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a spanning set of a subspace $V$ in $\R^5$. If $\mathbf{v}_4$ is another vector in $V$, then is the set \[S_2=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}\] still a spanning set for […]
  • Linear Independent Vectors and the Vector Space Spanned By ThemLinear Independent Vectors and the Vector Space Spanned By Them Let $V$ be a vector space over a field $K$. Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ be linearly independent vectors in $V$. Let $U$ be the subspace of $V$ spanned by these vectors, that is, $U=\Span \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$. Let […]
  • The Subspace of Linear Combinations whose Sums of Coefficients are zeroThe Subspace of Linear Combinations whose Sums of Coefficients are zero Let $V$ be a vector space over a scalar field $K$. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ be vectors in $V$ and consider the subset \[W=\{a_1\mathbf{v}_1+a_2\mathbf{v}_2+\cdots+ a_k\mathbf{v}_k \mid a_1, a_2, \dots, a_k \in K \text{ and } […]
  • Vector Space of Polynomials and Coordinate VectorsVector Space of Polynomials and Coordinate Vectors Let $P_2$ be the vector space of all polynomials of degree two or less. Consider the subset in $P_2$ \[Q=\{ p_1(x), p_2(x), p_3(x), p_4(x)\},\] where \begin{align*} &p_1(x)=x^2+2x+1, &p_2(x)=2x^2+3x+1, \\ &p_3(x)=2x^2, &p_4(x)=2x^2+x+1. \end{align*} (a) Use the basis […]
  • Spanning Sets for $\R^2$ or its SubspacesSpanning Sets for $\R^2$ or its Subspaces In this problem, we use the following vectors in $\R^2$. \[\mathbf{a}=\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{b}=\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{c}=\begin{bmatrix} 2 \\ 3 \end{bmatrix}, \mathbf{d}=\begin{bmatrix} 3 \\ 2 […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Vector Space Problems and Solutions
Find a Basis for the Subspace spanned by Five Vectors

Let $S=\{\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{3},\mathbf{v}_{4},\mathbf{v}_{5}\}$ where \[ \mathbf{v}_{1}= \begin{bmatrix} 1 \\ 2 \\ 2 \\ -1 \end{bmatrix} ,\;\mathbf{v}_{2}= \begin{bmatrix} 1 \\ 3 \\...

Close