Find a Basis For the Null Space of a Given $2\times 3$ Matrix

Linear Algebra Problems and Solutions

Problem 132

Let
\[A=\begin{bmatrix}
1 & 1 & 0 \\
1 &1 &0
\end{bmatrix}\] be a matrix.

Find a basis of the null space of the matrix $A$.

(Remark: a null space is also called a kernel.)

 
LoadingAdd to solve later

Sponsored Links


Solution.

The null space $\calN(A)$ of the matrix $A$ is by definition
\[\calN(A)=\{ \mathbf{x} \in \R^3 \mid A\mathbf{x}=\mathbf{0} \}.\] In other words, the null space consists of all solutions $\mathbf{x}$ of the matrix equation $A\mathbf{x}=\mathbf{0}$.

So we first determine the solutions of $A\mathbf{x}=\mathbf{0}$ by Gauss-Jordan elimination. The augmented matrix is
\begin{align*}
\left[\begin{array}{rrr|r}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array} \right].
\end{align*}
Subtracting $R_1$ from $R_2$, we reduce the augmented matrix to the reduced row echelon form matrix as follows.
\begin{align*}
\left[\begin{array}{rrr|r}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array} \right] \xrightarrow{R_2-R_1}
\left[\begin{array}{rrr|r}
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array} \right].
\end{align*}
Thus the solution $\mathbf{x}=\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}$ of $A\mathbf{x}=\mathbf{0}$ satisfies $x_1+x_2=0$, or equivalently $x_1=-x_2$.
Substituting the last equality, we see that solutions are of the form
\[\mathbf{x}=\begin{bmatrix}
-x_2 \\
x_2 \\
x_3
\end{bmatrix}=x_2\begin{bmatrix}
-1 \\
1 \\
0
\end{bmatrix}+x_3\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}.\] Therefore the null space is
\begin{align*}
\calN(A)&=\left \{\mathbf{x} \in \R^3 \quad \middle| \quad \mathbf{x}=x_2\begin{bmatrix}
-1 \\
1 \\
0
\end{bmatrix}+x_3\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} \text{ for any } x_2, x_3 \in \R \right \}\\[6pt] &= \mathrm{Sp} \left\{ \, \begin{bmatrix}
-1 \\
1 \\
0
\end{bmatrix}, \,
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} \, \right\}.
\end{align*}
Thus, the set $\left\{ \, \begin{bmatrix}
-1 \\
1 \\
0
\end{bmatrix}, \,
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} \, \right\}$ is a spanning set for the null space $\calN(A)$.


Now, we check that the vectors $\begin{bmatrix}
-1 \\
1 \\
0
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}$ are linearly independent.
Consider a linear combination
\[a_1\begin{bmatrix}
-1 \\
1 \\
0
\end{bmatrix}+a_2\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} =\mathbf{0}.\] This is equivalent to
\[\begin{bmatrix}
-a_1 \\
a_1 \\
a_2
\end{bmatrix}=\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}.\] Hence we must have $a_1=a_2=0$.
Since the linear combination equation has only the zero solution, the vectors $\begin{bmatrix}
-1 \\
1 \\
0
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}$ are linearly independent.


Therefore the set $\left\{ \, \begin{bmatrix}
-1 \\
1 \\
0
\end{bmatrix}, \,
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}\, \right\}$ is a linearly independent spanning set, thus it is a basis for the null space $\calN(A)$.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
Find a Basis and the Dimension of the Subspace of the 4-Dimensional Vector Space

Let $V$ be the following subspace of the $4$-dimensional vector space $\R^4$. \[V:=\left\{ \quad\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\...

Close