Find a Basis for the Subspace spanned by Five Vectors

Vector Space Problems and Solutions

Problem 709

Let $S=\{\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{3},\mathbf{v}_{4},\mathbf{v}_{5}\}$ where
\[
\mathbf{v}_{1}=
\begin{bmatrix}
1 \\ 2 \\ 2 \\ -1
\end{bmatrix}
,\;\mathbf{v}_{2}=
\begin{bmatrix}
1 \\ 3 \\ 1 \\ 1
\end{bmatrix}
,\;\mathbf{v}_{3}=
\begin{bmatrix}
1 \\ 5 \\ -1 \\ 5
\end{bmatrix}
,\;\mathbf{v}_{4}=
\begin{bmatrix}
1 \\ 1 \\ 4 \\ -1
\end{bmatrix}
,\;\mathbf{v}_{5}=
\begin{bmatrix}
2 \\ 7 \\ 0 \\ 2
\end{bmatrix}
.\] Find a basis for the span $\Span(S)$.

 
LoadingAdd to solve later

Sponsored Links


We will give two solutions.

Solution 1.

We apply the leading 1 method.
Let $A$ be the matrix whose column vectors are vectors in the set $S$:
\[
A=
\begin{bmatrix}
1 & 1 & 1 & 1 & 2 \\
2 & 3 & 5 & 1 & 7 \\
2 & 1 & -1 & 4 & 0 \\
-1 & 1 & 5 & -1 & 2
\end{bmatrix}
.\] Applying the elementary row operations to $A$, we obtain
\begin{align*}
A=\begin{bmatrix}
1 & 1 & 1 & 1 & 2 \\
2 & 3 & 5 & 1 & 7 \\
2 & 1 & -1 & 4 & 0 \\
-1 & 1 & 5 & -1 & 2
\end{bmatrix}
\xrightarrow[R_4+R_1]{\substack{R_2-2R_1 \\ R_3-2R_1}}
\begin{bmatrix}
1 & 1 & 1 & 1 & 2 \\
0 & 1 & 3 & -1 & 3 \\
0 & -1 & -3 & 2 & -4 \\
0 & 2 & 6 & 0 & 4
\end{bmatrix}\\[6pt] \xrightarrow[R_4-2R_2]{\substack{R_1-R_2 \\ R_3+R_2}}
\begin{bmatrix}
1 & 0 & -2 & 2 & -1 \\
0 & 1 & 3 & -1 & 3 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 2 & -2
\end{bmatrix}
\xrightarrow[R_4-2R_3]{\substack{R_1-2R_3 \\ R_2+R_3}}
\begin{bmatrix}
1 & 0 & -2 & 0 & 1 \\
0 & 1 & 3 & 0 & 2 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}=\rref(A).
\end{align*}
Observe that the first, second, and fourth column vectors of $\rref(A)$ contain the leading 1 entries.
Hence, the first, second, and fourth column vectors of $A$ form a basis of $\Span(S)$.
Namely,
\[\left\{ \begin{bmatrix}
1 \\
2 \\
2 \\
-1
\end{bmatrix}, \begin{bmatrix}
1 \\
3 \\
1 \\
1
\end{bmatrix}, \begin{bmatrix}
1 \\
1 \\
4 \\
-1
\end{bmatrix}\right \}\] is a basis for $\Span(S)$.

Solution 2.

Let
\[
A=
\begin{bmatrix}
1 & 1 & 1 & 1 & 2 \\
2 & 3 & 5 & 1 & 7 \\
2 & 1 & -1 & 4 & 0 \\
-1 & 1 & 5 & -1 & 2
\end{bmatrix}
.\] Then $\Span(S)$ is the column space of $A$, which is the row space of $A^{T}$. Using row operations, we have
\[
A^{T}=
\begin{bmatrix}
1 & 2 & 2 & -1 \\
1 & 3 & 1 & 1 \\
1 & 5 & -1 & 5 \\
1 & 1 & 4 & -1 \\
2 & 7 & 0 & 2
\end{bmatrix}
\to
\begin{bmatrix}
1 & 2 & 2 & -1 \\
0 & 1 & -1 & 2 \\
0 & 3 & -3 & 6 \\
0 & -1 & 2 & 0 \\
0 & 3 & -4 & 4
\end{bmatrix}
\to
\begin{bmatrix}
1 & 0 & 4 & 5 \\
0 & 1 & -1 & 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & -1 & -2
\end{bmatrix}
\] \[
\to
\begin{bmatrix}
1 & 0 & 0 & -13 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
.
\] Therefore, the set of nonzero rows
\[
\left\{
\begin{bmatrix}
1 \\ 0 \\ 0 \\ -13
\end{bmatrix}
,
\begin{bmatrix}
0 \\ 1 \\ 0 \\ 4
\end{bmatrix}
,
\begin{bmatrix}
0 \\ 0 \\ 1 \\ 2
\end{bmatrix}
\right\}
\] is a basis for the row space of $A^{T}$, which equals $\Span(S)$.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Vector Space Problems and Solutions
How to Find a Basis for the Nullspace, Row Space, and Range of a Matrix

Let $A=\begin{bmatrix} 2 & 4 & 6 & 8 \\ 1 &3 & 0 & 5 \\ 1 & 1...

Close