# Purdue-univeristy-exam-eye-catch

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Simple Commutative Relation on Matrices Let $A$ and $B$ are $n \times n$ matrices with real entries. Assume that $A+B$ is invertible. Then show that \[A(A+B)^{-1}B=B(A+B)^{-1}A.\] (University of California, Berkeley Qualifying Exam) Proof. Let $P=A+B$. Then $B=P-A$. Using these, we express the given […]
- Non-Example of a Subspace in 3-dimensional Vector Space $\R^3$ Let $S$ be the following subset of the 3-dimensional vector space $\R^3$. \[S=\left\{ \mathbf{x}\in \R^3 \quad \middle| \quad \mathbf{x}=\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, x_1, x_2, x_3 \in \Z \right\}, \] where $\Z$ is the set of all integers. […]
- Example of an Element in the Product of Ideals that Cannot be Written as the Product of Two Elements Let $I=(x, 2)$ and $J=(x, 3)$ be ideal in the ring $\Z[x]$. (a) Prove that $IJ=(x, 6)$. (b) Prove that the element $x\in IJ$ cannot be written as $x=f(x)g(x)$, where $f(x)\in I$ and $g(x)\in J$. Hint. If $I=(a_1,\dots, a_m)$ and $J=(b_1, \dots, b_n)$ are […]
- Are Groups of Order 100, 200 Simple? Determine whether a group $G$ of the following order is simple or not. (a) $|G|=100$. (b) $|G|=200$. Hint. Use Sylow's theorem and determine the number of $5$-Sylow subgroup of the group $G$. Check out the post Sylow’s Theorem (summary) for a review of Sylow's […]
- Eigenvalues and their Algebraic Multiplicities of a Matrix with a Variable Determine all eigenvalues and their algebraic multiplicities of the matrix \[A=\begin{bmatrix} 1 & a & 1 \\ a &1 &a \\ 1 & a & 1 \end{bmatrix},\] where $a$ is a real number. Proof. To find eigenvalues we first compute the characteristic polynomial of the […]
- Dihedral Group and Rotation of the Plane Let $n$ be a positive integer. Let $D_{2n}$ be the dihedral group of order $2n$. Using the generators and the relations, the dihedral group $D_{2n}$ is given by \[D_{2n}=\langle r,s \mid r^n=s^2=1, sr=r^{-1}s\rangle.\] Put $\theta=2 \pi/n$. (a) Prove that the matrix […]
- Common Eigenvector of Two Matrices and Determinant of Commutator Let $A$ and $B$ be $n\times n$ matrices. Suppose that these matrices have a common eigenvector $\mathbf{x}$. Show that $\det(AB-BA)=0$. Steps. Write down eigenequations of $A$ and $B$ with the eigenvector $\mathbf{x}$. Show that AB-BA is singular. A matrix is […]
- Is the Trace of the Transposed Matrix the Same as the Trace of the Matrix? Let $A$ be an $n \times n$ matrix. Is it true that $\tr ( A^\trans ) = \tr(A)$? If it is true, prove it. If not, give a counterexample. Solution. The answer is true. Recall that the transpose of a matrix is the sum of its diagonal entries. Also, note that the […]