Find a Linear Transformation Whose Image (Range) is a Given Subspace
Problem 392
Let $V$ be the subspace of $\R^4$ defined by the equation
\[x_1-x_2+2x_3+6x_4=0.\]
Find a linear transformation $T$ from $\R^3$ to $\R^4$ such that the null space $\calN(T)=\{\mathbf{0}\}$ and the range $\calR(T)=V$. Describe $T$ by its matrix $A$.
Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ be the vectors appearing in the above linear combination of $\mathbf{x}$.
Then it is straightforward to see that the set $B=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis of $V$.
We define the linear transformation $T:\R^3\to \R^4$ by
\begin{align*}
T(\mathbf{x})=A\mathbf{x},
\end{align*}
where
\[A=[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]=\begin{bmatrix}
1 & -2 & -6 \\
1 &0 &0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}.\]
Since $B$ is a basis of $V$, in particular it is a linearly independent set. Thus, the columns of $A$ is linearly independent.
It follows that the null space $\calN(T)=\calN(A)=\{\mathbf{0}\}$.
Also, the range of $T$ is the same as the range of $A$, which is spanned by the columns of $A$.
Thus, the range $\calR(T)=\Span(B)=V$.
By our definition of $T$, the matrix representation of $T$ is $A$.
A more explicit formula for $T$ is given by
\begin{align*}
T\left(\, \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} \,\right)=
\begin{bmatrix}
1 & -2 & -6 \\
1 &0 &0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=\begin{bmatrix}
x_1-2x_2-6x_3 \\
x_1\\
x_2 \\
x_3
\end{bmatrix}.
\end{align*}
Subspace Spanned By Cosine and Sine Functions
Let $\calF[0, 2\pi]$ be the vector space of all real valued functions defined on the interval $[0, 2\pi]$.
Define the map $f:\R^2 \to \calF[0, 2\pi]$ by
\[\left(\, f\left(\, \begin{bmatrix}
\alpha \\
\beta
\end{bmatrix} \,\right) \,\right)(x):=\alpha \cos x + \beta […]
Idempotent Matrices are Diagonalizable
Let $A$ be an $n\times n$ idempotent matrix, that is, $A^2=A$. Then prove that $A$ is diagonalizable.
We give three proofs of this problem. The first one proves that $\R^n$ is a direct sum of eigenspaces of $A$, hence $A$ is diagonalizable.
The second proof proves […]
Projection to the subspace spanned by a vector
Let $T: \R^3 \to \R^3$ be the linear transformation given by orthogonal projection to the line spanned by $\begin{bmatrix}
1 \\
2 \\
2
\end{bmatrix}$.
(a) Find a formula for $T(\mathbf{x})$ for $\mathbf{x}\in \R^3$.
(b) Find a basis for the image subspace of $T$.
(c) Find […]
Quiz 6. Determine Vectors in Null Space, Range / Find a Basis of Null Space
(a) Let $A=\begin{bmatrix}
1 & 2 & 1 \\
3 &6 &4
\end{bmatrix}$ and let
\[\mathbf{a}=\begin{bmatrix}
-3 \\
1 \\
1
\end{bmatrix}, \qquad \mathbf{b}=\begin{bmatrix}
-2 \\
1 \\
0
\end{bmatrix}, \qquad \mathbf{c}=\begin{bmatrix}
1 \\
1 […]
Row Equivalent Matrix, Bases for the Null Space, Range, and Row Space of a Matrix
Let \[A=\begin{bmatrix}
1 & 1 & 2 \\
2 &2 &4 \\
2 & 3 & 5
\end{bmatrix}.\]
(a) Find a matrix $B$ in reduced row echelon form such that $B$ is row equivalent to the matrix $A$.
(b) Find a basis for the null space of $A$.
(c) Find a basis for the range of $A$ that […]
A Matrix Representation of a Linear Transformation and Related Subspaces
Let $T:\R^4 \to \R^3$ be a linear transformation defined by
\[ T\left (\, \begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix} \,\right) = \begin{bmatrix}
x_1+2x_2+3x_3-x_4 \\
3x_1+5x_2+8x_3-2x_4 \\
x_1+x_2+2x_3
\end{bmatrix}.\]
(a) Find a matrix $A$ such that […]
Rank and Nullity of a Matrix, Nullity of Transpose
Let $A$ be an $m\times n$ matrix. The nullspace of $A$ is denoted by $\calN(A)$.
The dimension of the nullspace of $A$ is called the nullity of $A$.
Prove the followings.
(a) $\calN(A)=\calN(A^{\trans}A)$.
(b) $\rk(A)=\rk(A^{\trans}A)$.
Hint.
For part (b), […]