Find a Quadratic Function Satisfying Conditions on Derivatives Problem 650

Find a quadratic function $f(x) = ax^2 + bx + c$ such that $f(1) = 3$, $f'(1) = 3$, and $f^{\prime\prime}(1) = 2$.

Here, $f'(x)$ and $f^{\prime\prime}(x)$ denote the first and second derivatives, respectively. Add to solve later

Solution.

Each condition required on $f$ can be turned into an equation involving the constants $a, b, c$.

In particular, $f(1) = 3$ tells us that $a + b + c = 3$.

Because $f'(x) = 2ax + b$, the condition $f'(1) = 3$ gives us $2a + b = 3$.

And finally $f^{\prime\prime}(x) = 2a$, and so $f^{\prime\prime}(1) = 2a = 2$. Thus we have the system of equations
\begin{align*}
a + b + c &= 3 \\
2a + b &= 3\\
2a &= 2
\end{align*}

To solve this system, we could create the augmented matrix and then reduce it.

For this system, though, it is simpler to solve directly. The third equation tells us that $a=1$.

Plugging this value into the second equation, we find $b=1$.

Plugging both of these values into the first equation, we see $c=1$ as well.

Thus the function we want is $f(x) = x^2 + x + 1$. Add to solve later

More from my site

You may also like...

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra Determine a 2-Digit Number Satisfying Two Conditions

A 2-digit number has two properties: The digits sum to 11, and if the number is written with digits reversed,...

Close