Find a Row-Equivalent Matrix which is in Reduced Row Echelon Form and Determine the Rank

Linear algebra problems and solutions

Problem 643

For each of the following matrices, find a row-equivalent matrix which is in reduced row echelon form. Then determine the rank of each matrix.

(a) $A = \begin{bmatrix} 1 & 3 \\ -2 & 2 \end{bmatrix}$.

(b) $B = \begin{bmatrix} 2 & 6 & -2 \\ 3 & -2 & 8 \end{bmatrix}$.

(c) $C = \begin{bmatrix} 2 & -2 & 4 \\ 4 & 1 & -2 \\ 6 & -1 & 2 \end{bmatrix}$.

(d) $D = \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix}$.

(e) $E = \begin{bmatrix} -2 & 3 & 1 \end{bmatrix}$.

 
LoadingAdd to solve later

Sponsored Links


Definition (Rank of a Matrix).

The rank of a matrix $A$ is the number of nonzero rows in the reduced row echelon form matrix $\rref(A)$ that is row equivalent to $A$.

Solution.

(a) $A = \begin{bmatrix} 1 & 3 \\ -2 & 2 \end{bmatrix}$

The matrix $A$ has rank 2, which can be seen by computing
\[ \begin{bmatrix} 1 & 3 \\ -2 & 2 \end{bmatrix} \xrightarrow{R_2 + 2 R_1} \begin{bmatrix} 1 & 3 \\ 0 & 8 \end{bmatrix} \xrightarrow{\frac{1}{8} R_2 } \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \xrightarrow{R_1 – 3 R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. \] Because the row-reduced matrix has two non-zero rows, the rank of $A$ is $2$.

(b) $B = \begin{bmatrix} 2 & 6 & -2 \\ 3 & -2 & 8 \end{bmatrix}$

The matrix $B$ has rank 2, which can be seen by computing
\begin{align*}
\begin{bmatrix} 2 & 6 & -2 \\ 3 & -2 & 8 \end{bmatrix} \xrightarrow{\frac{1}{2} R_1 } \begin{bmatrix} 1 & 3 & -1 \\ 3 & -2 & 8 \end{bmatrix} \xrightarrow{R_2 – 3 R_1} \begin{bmatrix} 1 & 3 & -1 \\ 0 & -11 & 11 \end{bmatrix} \\[6pt] \xrightarrow{\frac{-1}{11} R_2 } \begin{bmatrix} 1 & 3 & -1 \\ 0 & 1 & -1 \end{bmatrix} \xrightarrow{R_1 – 3 R_2} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \end{bmatrix}
\end{align*}

(c) $C = \begin{bmatrix} 2 & -2 & 4 \\ 4 & 1 & -2 \\ 6 & -1 & 2 \end{bmatrix}$

The matrix $C$ has rank 2, which can be seen by computing
\begin{align*}
\begin{bmatrix} 2 & -2 & 4 \\ 4 & 1 & -2 \\ 6 & -1 & 2 \end{bmatrix} \xrightarrow{\frac{1}{2} R_1 } \begin{bmatrix} 1 & -1 & 2 \\ 4 & 1 & -2 \\ 6 & -1 & 2 \end{bmatrix} \xrightarrow[R_3 – 6 R_1]{R_2 – 4 R_1} \begin{bmatrix} 1 & -1 & 2 \\ 0 & 5 & -10 \\ 0 & 5 & -10 \end{bmatrix} \\[6pt] \xrightarrow{R_3 – R_2} \begin{bmatrix} 1 & -1 & 2 \\ 0 & 5 & -10 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{ \frac{1}{5} R_2 } \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_1 + R_2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix} .
\end{align*}

(d) $D = \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix}$

The matrix $D$ has rank 1, which can be seen by calculating:
\[\begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix} \xrightarrow{ \frac{-1}{2} R_1 } \begin{bmatrix} 1 \\ 3 \\1 \end{bmatrix} \xrightarrow{R_2 – 3 R_1 , R_3 – R_1} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.\]

(e) $E = \begin{bmatrix} -2 & 3 & 1 \end{bmatrix}$

The matrix $E$ has rank 1, which can be seen by calculating:
\[\begin{bmatrix} -2 & 3 & 1 \end{bmatrix} \xrightarrow{ \frac{-1}{2} R_1 } \begin{bmatrix} 1 & \frac{-3}{2} & \frac{-1}{2} \end{bmatrix}.\]


LoadingAdd to solve later

Sponsored Links

More from my site

  • If Two Matrices Have the Same Rank, Are They Row-Equivalent?If Two Matrices Have the Same Rank, Are They Row-Equivalent? If $A, B$ have the same rank, can we conclude that they are row-equivalent? If so, then prove it. If not, then provide a counterexample.   Solution. Having the same rank does not mean they are row-equivalent. For a simple counterexample, consider $A = […]
  • Range, Null Space, Rank, and Nullity of a Linear Transformation from $\R^2$ to $\R^3$Range, Null Space, Rank, and Nullity of a Linear Transformation from $\R^2$ to $\R^3$ Define the map $T:\R^2 \to \R^3$ by $T \left ( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right )=\begin{bmatrix} x_1-x_2 \\ x_1+x_2 \\ x_2 \end{bmatrix}$. (a) Show that $T$ is a linear transformation. (b) Find a matrix $A$ such that […]
  • Row Equivalent Matrix, Bases for the Null Space, Range, and Row Space of a MatrixRow Equivalent Matrix, Bases for the Null Space, Range, and Row Space of a Matrix Let \[A=\begin{bmatrix} 1 & 1 & 2 \\ 2 &2 &4 \\ 2 & 3 & 5 \end{bmatrix}.\] (a) Find a matrix $B$ in reduced row echelon form such that $B$ is row equivalent to the matrix $A$. (b) Find a basis for the null space of $A$. (c) Find a basis for the range of $A$ that […]
  • Find the Rank of a Matrix with a ParameterFind the Rank of a Matrix with a Parameter Find the rank of the following real matrix. \[ \begin{bmatrix} a & 1 & 2 \\ 1 &1 &1 \\ -1 & 1 & 1-a \end{bmatrix},\] where $a$ is a real number.   (Kyoto University, Linear Algebra Exam) Solution. The rank is the number of nonzero rows of a […]
  • Quiz 7. Find a Basis of the Range, Rank, and Nullity of a MatrixQuiz 7. Find a Basis of the Range, Rank, and Nullity of a Matrix (a) Let $A=\begin{bmatrix} 1 & 3 & 0 & 0 \\ 1 &3 & 1 & 2 \\ 1 & 3 & 1 & 2 \end{bmatrix}$. Find a basis for the range $\calR(A)$ of $A$ that consists of columns of $A$. (b) Find the rank and nullity of the matrix $A$ in part (a).   Solution. (a) […]
  • If a Matrix $A$ is Full Rank, then $\rref(A)$ is the Identity MatrixIf a Matrix $A$ is Full Rank, then $\rref(A)$ is the Identity Matrix Prove that if $A$ is an $n \times n$ matrix with rank $n$, then $\rref(A)$ is the identity matrix. Here $\rref(A)$ is the matrix in reduced row echelon form that is row equivalent to the matrix $A$.   Proof. Because $A$ has rank $n$, we know that the $n \times n$ […]
  • Find All 3 by 3 Reduced Row Echelon Form Matrices of Rank 1 and 2Find All 3 by 3 Reduced Row Echelon Form Matrices of Rank 1 and 2 (a) Find all $3 \times 3$ matrices which are in reduced row echelon form and have rank 1. (b) Find all such matrices with rank 2.   Solution. (a) Find all $3 \times 3$ matrices which are in reduced row echelon form and have rank 1. First we look at the rank 1 case. […]
  • Determine When the Given Matrix InvertibleDetermine When the Given Matrix Invertible For which choice(s) of the constant $k$ is the following matrix invertible? \[A=\begin{bmatrix} 1 & 1 & 1 \\ 1 &2 &k \\ 1 & 4 & k^2 \end{bmatrix}.\]   (Johns Hopkins University, Linear Algebra Exam)   Hint. An $n\times n$ matrix is […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Problems and solutions in Linear Algebra
Row Equivalence of Matrices is Transitive

If $A, B, C$ are three $m \times n$ matrices such that $A$ is row-equivalent to $B$ and $B$ is...

Close