# finalOSUfindeigenvalues

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Subgroup Containing All $p$-Sylow Subgroups of a Group Suppose that $G$ is a finite group of order $p^an$, where $p$ is a prime number and $p$ does not divide $n$. Let $N$ be a normal subgroup of $G$ such that the index $|G: N|$ is relatively prime to $p$. Then show that $N$ contains all $p$-Sylow subgroups of […]
- Give the Formula for a Linear Transformation from $\R^3$ to $\R^2$ Let $T: \R^3 \to \R^2$ be a linear transformation such that \[T(\mathbf{e}_1)=\begin{bmatrix} 1 \\ 4 \end{bmatrix}, T(\mathbf{e}_2)=\begin{bmatrix} 2 \\ 5 \end{bmatrix}, T(\mathbf{e}_3)=\begin{bmatrix} 3 \\ 6 […]
- Hyperplane Through Origin is Subspace of 4-Dimensional Vector Space Let $S$ be the subset of $\R^4$ consisting of vectors $\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$ satisfying \[2x+3y+5z+7w=0.\] Then prove that the set $S$ is a subspace of $\R^4$. (Linear Algebra Exam Problem, The Ohio State […]
- Eigenvalues and Eigenvectors of The Cross Product Linear Transformation We fix a nonzero vector $\mathbf{a}$ in $\R^3$ and define a map $T:\R^3\to \R^3$ by \[T(\mathbf{v})=\mathbf{a}\times \mathbf{v}\] for all $\mathbf{v}\in \R^3$. Here the right-hand side is the cross product of $\mathbf{a}$ and $\mathbf{v}$. (a) Prove that $T:\R^3\to \R^3$ is […]
- The Matrix for the Linear Transformation of the Reflection Across a Line in the Plane Let $T:\R^2 \to \R^2$ be a linear transformation of the $2$-dimensional vector space $\R^2$ (the $x$-$y$-plane) to itself which is the reflection across a line $y=mx$ for some $m\in \R$. Then find the matrix representation of the linear transformation $T$ with respect to the […]
- Even Perfect Numbers and Mersenne Prime Numbers Prove that if $2^n-1$ is a Mersenne prime number, then \[N=2^{n-1}(2^n-1)\] is a perfect number. On the other hand, prove that every even perfect number $N$ can be written as $N=2^{n-1}(2^n-1)$ for some Mersenne prime number $2^n-1$. Definitions. In this post, a […]
- Find a Matrix that Maps Given Vectors to Given Vectors Suppose that a real matrix $A$ maps each of the following vectors \[\mathbf{x}_1=\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{x}_2=\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \mathbf{x}_3=\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \] into the […]
- Solve the Linear Dynamical System $\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} =A\mathbf{x}$ by Diagonalization (a) Find all solutions of the linear dynamical system \[\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} =\begin{bmatrix} 1 & 0\\ 0& 3 \end{bmatrix}\mathbf{x},\] where $\mathbf{x}(t)=\mathbf{x}=\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is a function of the variable […]