# finalOSUfindeigenvalues

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Taking the Third Order Taylor Polynomial is a Linear Transformation The space $C^{\infty} (\mathbb{R})$ is the vector space of real functions which are infinitely differentiable. Let $T : C^{\infty} (\mathbb{R}) \rightarrow \mathrm{P}_3$ be the map which takes $f \in C^{\infty}(\mathbb{R})$ to its third order Taylor polynomial, specifically defined […]
- Linear Transformation that Maps Each Vector to Its Reflection with Respect to $x$-Axis Let $F:\R^2\to \R^2$ be the function that maps each vector in $\R^2$ to its reflection with respect to $x$-axis. Determine the formula for the function $F$ and prove that $F$ is a linear transformation. Solution 1. Let $\begin{bmatrix} x \\ y […]
- Find a Basis of the Eigenspace Corresponding to a Given Eigenvalue Let \[A=\begin{bmatrix} 1 & 2 & 1 \\ -1 &4 &1 \\ 2 & -4 & 0 \end{bmatrix}.\] The matrix $A$ has an eigenvalue $2$. Find a basis of the eigenspace $E_2$ corresponding to the eigenvalue $2$. (The Ohio State University, Linear Algebra Final Exam […]
- Sylow Subgroups of a Group of Order 33 is Normal Subgroups Prove that any $p$-Sylow subgroup of a group $G$ of order $33$ is a normal subgroup of $G$. Hint. We use Sylow's theorem. Review the basic terminologies and Sylow's theorem. Recall that if there is only one $p$-Sylow subgroup $P$ of $G$ for a fixed prime $p$, then $P$ […]
- Group Homomorphism Sends the Inverse Element to the Inverse Element Let $G, G'$ be groups. Let $\phi:G\to G'$ be a group homomorphism. Then prove that for any element $g\in G$, we have \[\phi(g^{-1})=\phi(g)^{-1}.\] Definition (Group homomorphism). A map $\phi:G\to G'$ is called a group homomorphism […]
- A Basis for the Vector Space of Polynomials of Degree Two or Less and Coordinate Vectors Show that the set \[S=\{1, 1-x, 3+4x+x^2\}\] is a basis of the vector space $P_2$ of all polynomials of degree $2$ or less. Proof. We know that the set $B=\{1, x, x^2\}$ is a basis for the vector space $P_2$. With respect to this basis $B$, the coordinate […]
- Is the Trace of the Transposed Matrix the Same as the Trace of the Matrix? Let $A$ be an $n \times n$ matrix. Is it true that $\tr ( A^\trans ) = \tr(A)$? If it is true, prove it. If not, give a counterexample. Solution. The answer is true. Recall that the transpose of a matrix is the sum of its diagonal entries. Also, note that the […]
- Finite Group and Subgroup Criteria Let $G$ be a finite group and let $H$ be a subset of $G$ such that for any $a,b \in H$, $ab\in H$. Then show that $H$ is a subgroup of $G$. Proof. Let $a \in H$. To show that $H$ is a subgroup of $G$, it suffices to show that the inverse $a^{-1}$ is in $H$. If […]