finalOSUfindeigenvalues

LoadingAdd to solve later

Final Exam Problems and Solutions of Linear Algebra Math 2568 at the Ohio State University


LoadingAdd to solve later

More from my site

  • Short Exact Sequence and Finitely Generated ModulesShort Exact Sequence and Finitely Generated Modules Let $R$ be a ring with $1$. Let \[0\to M\xrightarrow{f} M' \xrightarrow{g} M^{\prime\prime} \to 0 \tag{*}\] be an exact sequence of left $R$-modules. Prove that if $M$ and $M^{\prime\prime}$ are finitely generated, then $M'$ is also finitely generated.   […]
  • Characteristic Polynomial, Eigenvalues, Diagonalization Problem (Princeton University Exam)Characteristic Polynomial, Eigenvalues, Diagonalization Problem (Princeton University Exam) Let \[\begin{bmatrix} 0 & 0 & 1 \\ 1 &0 &0 \\ 0 & 1 & 0 \end{bmatrix}.\] (a) Find the characteristic polynomial and all the eigenvalues (real and complex) of $A$. Is $A$ diagonalizable over the complex numbers? (b) Calculate $A^{2009}$. (Princeton University, […]
  • Basic Properties of Characteristic GroupsBasic Properties of Characteristic Groups Definition (automorphism). An isomorphism from a group $G$ to itself is called an automorphism of $G$. The set of all automorphism is denoted by $\Aut(G)$. Definition (characteristic subgroup). A subgroup $H$ of a group $G$ is called characteristic in $G$ if for any $\phi […]
  • Determine the Splitting Field of the Polynomial $x^4+x^2+1$ over $\Q$Determine the Splitting Field of the Polynomial $x^4+x^2+1$ over $\Q$ Determine the splitting field and its degree over $\Q$ of the polynomial \[x^4+x^2+1.\] Hint. The polynomial $x^4+x^2+1$ is not irreducible over $\Q$. Proof. Note that we can factor the polynomial as […]
  • Quiz 1. Gauss-Jordan Elimination / Homogeneous System. Math 2568 Spring 2017.Quiz 1. Gauss-Jordan Elimination / Homogeneous System. Math 2568 Spring 2017. (a) Solve the following system by transforming the augmented matrix to reduced echelon form (Gauss-Jordan elimination). Indicate the elementary row operations you performed. […]
  • Example of a Nilpotent Matrix $A$ such that $A^2\neq O$ but $A^3=O$.Example of a Nilpotent Matrix $A$ such that $A^2\neq O$ but $A^3=O$. Find a nonzero $3\times 3$ matrix $A$ such that $A^2\neq O$ and $A^3=O$, where $O$ is the $3\times 3$ zero matrix. (Such a matrix is an example of a nilpotent matrix. See the comment after the solution.)   Solution. For example, let $A$ be the following $3\times […]
  • The Index of the Center of a Non-Abelian $p$-Group is Divisible by $p^2$The Index of the Center of a Non-Abelian $p$-Group is Divisible by $p^2$ Let $p$ be a prime number. Let $G$ be a non-abelian $p$-group. Show that the index of the center of $G$ is divisible by $p^2$. Proof. Suppose the order of the group $G$ is $p^a$, for some $a \in \Z$. Let $Z(G)$ be the center of $G$. Since $Z(G)$ is a subgroup of $G$, the order […]
  • Finite Order Matrix and its TraceFinite Order Matrix and its Trace Let $A$ be an $n\times n$ matrix and suppose that $A^r=I_n$ for some positive integer $r$. Then show that (a) $|\tr(A)|\leq n$. (b) If $|\tr(A)|=n$, then $A=\zeta I_n$ for an $r$-th root of unity $\zeta$. (c) $\tr(A)=n$ if and only if $A=I_n$. Proof. (a) […]

Leave a Reply

Your email address will not be published. Required fields are marked *