finalOSUfindeigenvalues

finalOSUfindeigenvalues

LoadingAdd to solve later

Sponsored Links

Final Exam Problems and Solutions of Linear Algebra Math 2568 at the Ohio State University


LoadingAdd to solve later

Sponsored Links

More from my site

  • Find the Inverse Matrix of a Matrix With FractionsFind the Inverse Matrix of a Matrix With Fractions Find the inverse matrix of the matrix \[A=\begin{bmatrix} \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\[6 pt] \frac{6}{7} &\frac{2}{7} &-\frac{3}{7} \\[6pt] -\frac{3}{7} & \frac{6}{7} & -\frac{2}{7} \end{bmatrix}.\]   Hint. You may use the augmented matrix […]
  • Nontrivial Action of a Simple Group on a Finite SetNontrivial Action of a Simple Group on a Finite Set Let $G$ be a simple group and let $X$ be a finite set. Suppose $G$ acts nontrivially on $X$. That is, there exist $g\in G$ and $x \in X$ such that $g\cdot x \neq x$. Then show that $G$ is a finite group and the order of $G$ divides $|X|!$. Proof. Since $G$ acts on $X$, it […]
  • Hyperplane Through Origin is Subspace of 4-Dimensional Vector SpaceHyperplane Through Origin is Subspace of 4-Dimensional Vector Space Let $S$ be the subset of $\R^4$ consisting of vectors $\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$ satisfying \[2x+3y+5z+7w=0.\] Then prove that the set $S$ is a subspace of $\R^4$. (Linear Algebra Exam Problem, The Ohio State […]
  • Find the Nullspace and Range of the Linear Transformation $T(f)(x) = f(x)-f(0)$Find the Nullspace and Range of the Linear Transformation $T(f)(x) = f(x)-f(0)$ Let $C([-1, 1])$ denote the vector space of real-valued functions on the interval $[-1, 1]$. Define the vector subspace \[W = \{ f \in C([-1, 1]) \mid f(0) = 0 \}.\] Define the map $T : C([-1, 1]) \rightarrow W$ by $T(f)(x) = f(x) - f(0)$. Determine if $T$ is a linear map. If […]
  • Two Normal Subgroups Intersecting Trivially Commute Each OtherTwo Normal Subgroups Intersecting Trivially Commute Each Other Let $G$ be a group. Assume that $H$ and $K$ are both normal subgroups of $G$ and $H \cap K=1$. Then for any elements $h \in H$ and $k\in K$, show that $hk=kh$.   Proof. It suffices to show that $h^{-1}k^{-1}hk \in H \cap K$. In fact, if this it true then we have […]
  • Finite Order Matrix and its TraceFinite Order Matrix and its Trace Let $A$ be an $n\times n$ matrix and suppose that $A^r=I_n$ for some positive integer $r$. Then show that (a) $|\tr(A)|\leq n$. (b) If $|\tr(A)|=n$, then $A=\zeta I_n$ for an $r$-th root of unity $\zeta$. (c) $\tr(A)=n$ if and only if $A=I_n$. Proof. (a) […]
  • Equation $x_1^2+\cdots +x_k^2=-1$ Doesn’t Have a Solution in Number Field $\Q(\sqrt[3]{2}e^{2\pi i/3})$Equation $x_1^2+\cdots +x_k^2=-1$ Doesn’t Have a Solution in Number Field $\Q(\sqrt[3]{2}e^{2\pi i/3})$ Let $\alpha= \sqrt[3]{2}e^{2\pi i/3}$. Prove that $x_1^2+\cdots +x_k^2=-1$ has no solutions with all $x_i\in \Q(\alpha)$ and $k\geq 1$.   Proof. Note that $\alpha= \sqrt[3]{2}e^{2\pi i/3}$ is a root of the polynomial $x^3-2$. The polynomial $x^3-2$ is […]
  • Give a Formula For a Linear Transformation From $\R^2$ to $\R^3$Give a Formula For a Linear Transformation From $\R^2$ to $\R^3$ Let $\{\mathbf{v}_1, \mathbf{v}_2\}$ be a basis of the vector space $\R^2$, where \[\mathbf{v}_1=\begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ and } \mathbf{v}_2=\begin{bmatrix} 1 \\ -1 \end{bmatrix}.\] The action of a linear transformation $T:\R^2\to \R^3$ on the […]

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.