Determine the Values of $a$ so that $W_a$ is a Subspace
For what real values of $a$ is the set
\[W_a = \{ f \in C(\mathbb{R}) \mid f(0) = a \}\]
a subspace of the vector space $C(\mathbb{R})$ of all real-valued functions?
Solution.
The zero element of $C(\mathbb{R})$ is the function $\mathbf{0}$ defined by […]

The Range and Null Space of the Zero Transformation of Vector Spaces
Let $U$ and $V$ be vector spaces over a scalar field $\F$.
Define the map $T:U\to V$ by $T(\mathbf{u})=\mathbf{0}_V$ for each vector $\mathbf{u}\in U$.
(a) Prove that $T:U\to V$ is a linear transformation.
(Hence, $T$ is called the zero transformation.)
(b) Determine […]

If the Quotient by the Center is Cyclic, then the Group is Abelian
Let $Z(G)$ be the center of a group $G$.
Show that if $G/Z(G)$ is a cyclic group, then $G$ is abelian.
Steps.
Write $G/Z(G)=\langle \bar{g} \rangle$ for some $g \in G$.
Any element $x\in G$ can be written as $x=g^a z$ for some $z \in Z(G)$ and $a \in \Z$.
Using […]

Find the Dimension of the Subspace of Vectors Perpendicular to Given Vectors
Let $V$ be a subset of $\R^4$ consisting of vectors that are perpendicular to vectors $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$, where
\[\mathbf{a}=\begin{bmatrix}
1 \\
0 \\
1 \\
0
\end{bmatrix}, \quad \mathbf{b}=\begin{bmatrix}
1 \\
1 […]

If a Subgroup Contains a Sylow Subgroup, then the Normalizer is the Subgroup itself
Let $G$ be a finite group and $P$ be a nontrivial Sylow subgroup of $G$.
Let $H$ be a subgroup of $G$ containing the normalizer $N_G(P)$ of $P$ in $G$.
Then show that $N_G(H)=H$.
Hint.
Use the conjugate part of the Sylow theorem.
See the second statement of the […]

Determine the Number of Elements of Order 3 in a Non-Cyclic Group of Order 57
Let $G$ be a group of order $57$. Assume that $G$ is not a cyclic group.
Then determine the number of elements in $G$ of order $3$.
Proof.
Observe the prime factorization $57=3\cdot 19$.
Let $n_{19}$ be the number of Sylow $19$-subgroups of $G$.
By […]

Construction of a Symmetric Matrix whose Inverse Matrix is Itself
Let $\mathbf{v}$ be a nonzero vector in $\R^n$.
Then the dot product $\mathbf{v}\cdot \mathbf{v}=\mathbf{v}^{\trans}\mathbf{v}\neq 0$.
Set $a:=\frac{2}{\mathbf{v}^{\trans}\mathbf{v}}$ and define the $n\times n$ matrix $A$ by
\[A=I-a\mathbf{v}\mathbf{v}^{\trans},\]
where […]