# eigenvalue-eigenvector-eye-catch

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Three Linearly Independent Vectors in $\R^3$ Form a Basis. Three Vectors Spanning $\R^3$ Form a Basis. Let $B=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a set of three-dimensional vectors in $\R^3$. (a) Prove that if the set $B$ is linearly independent, then $B$ is a basis of the vector space $\R^3$. (b) Prove that if the set $B$ spans $\R^3$, then $B$ is a basis of […]
- Subset of Vectors Perpendicular to Two Vectors is a Subspace Let $\mathbf{a}$ and $\mathbf{b}$ be fixed vectors in $\R^3$, and let $W$ be the subset of $\R^3$ defined by \[W=\{\mathbf{x}\in \R^3 \mid \mathbf{a}^{\trans} \mathbf{x}=0 \text{ and } \mathbf{b}^{\trans} \mathbf{x}=0\}.\] Prove that the subset $W$ is a subspace of […]
- Determine Whether Each Set is a Basis for $\R^3$ Determine whether each of the following sets is a basis for $\R^3$. (a) $S=\left\{\, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 4 \end{bmatrix} […]
- Short Exact Sequence and Finitely Generated Modules Let $R$ be a ring with $1$. Let \[0\to M\xrightarrow{f} M' \xrightarrow{g} M^{\prime\prime} \to 0 \tag{*}\] be an exact sequence of left $R$-modules. Prove that if $M$ and $M^{\prime\prime}$ are finitely generated, then $M'$ is also finitely generated. […]
- Given Eigenvectors and Eigenvalues, Compute a Matrix Product (Stanford University Exam) Suppose that $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of a matrix $A$ corresponding to the eigenvalue $3$ and that $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is an eigenvector of $A$ corresponding to the eigenvalue $-2$. Compute $A^2\begin{bmatrix} 4 […]
- Cubic Polynomial $x^3-2$ is Irreducible Over the Field $\Q(i)$ Prove that the cubic polynomial $x^3-2$ is irreducible over the field $\Q(i)$. Proof. Note that the polynomial $x^3-2$ is irreducible over $\Q$ by Eisenstein's criterion (with prime $p=2$). This implies that if $\alpha$ is any root of $x^3-2$, then the […]
- Quiz 10. Find Orthogonal Basis / Find Value of Linear Transformation (a) Let $S=\{\mathbf{v}_1, \mathbf{v}_2\}$ be the set of the following vectors in $\R^4$. \[\mathbf{v}_1=\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \text{ and } \mathbf{v}_2=\begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}.\] […]
- Give the Formula for a Linear Transformation from $\R^3$ to $\R^2$ Let $T: \R^3 \to \R^2$ be a linear transformation such that \[T(\mathbf{e}_1)=\begin{bmatrix} 1 \\ 4 \end{bmatrix}, T(\mathbf{e}_2)=\begin{bmatrix} 2 \\ 5 \end{bmatrix}, T(\mathbf{e}_3)=\begin{bmatrix} 3 \\ 6 […]