# linear-algebra-eye-catch3

• Hyperplane in $n$-Dimensional Space Through Origin is a Subspace A hyperplane in $n$-dimensional vector space $\R^n$ is defined to be the set of vectors $\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}\in \R^n$ satisfying the linear equation of the form $a_1x_1+a_2x_2+\cdots+a_nx_n=b,$ […]
• Are Linear Transformations of Derivatives and Integrations Linearly Independent? Let $W=C^{\infty}(\R)$ be the vector space of all $C^{\infty}$ real-valued functions (smooth function, differentiable for all degrees of differentiation). Let $V$ be the vector space of all linear transformations from $W$ to $W$. The addition and the scalar multiplication of $V$ […]
• A Recursive Relationship for a Power of a Matrix Suppose that the $2 \times 2$ matrix $A$ has eigenvalues $4$ and $-2$. For each integer $n \geq 1$, there are real numbers $b_n , c_n$ which satisfy the relation $A^{n} = b_n A + c_n I ,$ where $I$ is the identity matrix. Find $b_n$ and $c_n$ for $2 \leq n \leq 5$, and […]
• Every $n$-Dimensional Vector Space is Isomorphic to the Vector Space $\R^n$ Let $V$ be a vector space over the field of real numbers $\R$. Prove that if the dimension of $V$ is $n$, then $V$ is isomorphic to $\R^n$.   Proof. Since $V$ is an $n$-dimensional vector space, it has a basis $B=\{\mathbf{v}_1, \dots, […] • Quiz 12. Find Eigenvalues and their Algebraic and Geometric Multiplicities (a) Let \[A=\begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 &1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}.$ Find the eigenvalues of the matrix $A$. Also give the algebraic multiplicity of each eigenvalue. (b) Let $A=\begin{bmatrix} 0 & 0 & 0 & 0 […] • Elements of Finite Order of an Abelian Group form a Subgroup Let G be an abelian group and let H be the subset of G consisting of all elements of G of finite order. That is, \[H=\{ a\in G \mid \text{the order of a is finite}\}.$ Prove that $H$ is a subgroup of $G$.   Proof. Note that the identity element $e$ of […]
• Find a Basis For the Null Space of a Given $2\times 3$ Matrix Let $A=\begin{bmatrix} 1 & 1 & 0 \\ 1 &1 &0 \end{bmatrix}$ be a matrix. Find a basis of the null space of the matrix $A$. (Remark: a null space is also called a kernel.)   Solution. The null space $\calN(A)$ of the matrix $A$ is by […]
• Is the Derivative Linear Transformation Diagonalizable? Let $\mathrm{P}_2$ denote the vector space of polynomials of degree $2$ or less, and let $T : \mathrm{P}_2 \rightarrow \mathrm{P}_2$ be the derivative linear transformation, defined by $T( ax^2 + bx + c ) = 2ax + b .$ Is $T$ diagonalizable? If so, find a diagonal matrix which […]