linear-algebra-eye-catch3

LoadingAdd to solve later

Problems and solutions in Linear Algebra


LoadingAdd to solve later

Sponsored Links

More from my site

  • The Sum of Cosine Squared in an Inner Product SpaceThe Sum of Cosine Squared in an Inner Product Space Let $\mathbf{v}$ be a vector in an inner product space $V$ over $\R$. Suppose that $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ is an orthonormal basis of $V$. Let $\theta_i$ be the angle between $\mathbf{v}$ and $\mathbf{u}_i$ for $i=1,\dots, n$. Prove that \[\cos […]
  • Every Group of Order 24 Has a Normal Subgroup of Order 4 or 8Every Group of Order 24 Has a Normal Subgroup of Order 4 or 8 Prove that every group of order $24$ has a normal subgroup of order $4$ or $8$.   Proof. Let $G$ be a group of order $24$. Note that $24=2^3\cdot 3$. Let $P$ be a Sylow $2$-subgroup of $G$. Then $|P|=8$. Consider the action of the group $G$ on […]
  • Galois Group of the Polynomial  $x^p-2$.Galois Group of the Polynomial $x^p-2$. Let $p \in \Z$ be a prime number. Then describe the elements of the Galois group of the polynomial $x^p-2$.   Solution. The roots of the polynomial $x^p-2$ are \[ \sqrt[p]{2}\zeta^k, k=0,1, \dots, p-1\] where $\sqrt[p]{2}$ is a real $p$-th root of $2$ and $\zeta$ […]
  • Determine a 2-Digit Number Satisfying Two ConditionsDetermine a 2-Digit Number Satisfying Two Conditions A 2-digit number has two properties: The digits sum to 11, and if the number is written with digits reversed, and subtracted from the original number, the result is 45. Find the number.   Solution. The key to this problem is noticing that our 2-digit number can be […]
  • Solving a System of Linear Equations Using Gaussian EliminationSolving a System of Linear Equations Using Gaussian Elimination Solve the following system of linear equations using Gaussian elimination. \begin{align*} x+2y+3z &=4 \\ 5x+6y+7z &=8\\ 9x+10y+11z &=12 \end{align*} Elementary row operations The three elementary row operations on a matrix are defined as […]
  • Subspace Spanned by Trigonometric Functions $\sin^2(x)$ and $\cos^2(x)$Subspace Spanned by Trigonometric Functions $\sin^2(x)$ and $\cos^2(x)$ Let $C[-2\pi, 2\pi]$ be the vector space of all real-valued continuous functions defined on the interval $[-2\pi, 2\pi]$. Consider the subspace $W=\Span\{\sin^2(x), \cos^2(x)\}$ spanned by functions $\sin^2(x)$ and $\cos^2(x)$. (a) Prove that the set $B=\{\sin^2(x), \cos^2(x)\}$ […]
  • Determine Conditions on Scalars so that the Set of Vectors is Linearly DependentDetermine Conditions on Scalars so that the Set of Vectors is Linearly Dependent Determine conditions on the scalars $a, b$ so that the following set $S$ of vectors is linearly dependent. \begin{align*} S=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}, \end{align*} where \[\mathbf{v}_1=\begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}, […]
  • If the Images of Vectors are Linearly Independent, then They Are Linearly IndependentIf the Images of Vectors are Linearly Independent, then They Are Linearly Independent Let $T: \R^n \to \R^m$ be a linear transformation. Suppose that $S=\{\mathbf{x}_1, \mathbf{x}_2,\dots, \mathbf{x}_k\}$ is a subset of $\R^n$ such that $\{T(\mathbf{x}_1), T(\mathbf{x}_2), \dots, T(\mathbf{x}_k) \}$ is a linearly independent subset of $\R^m$. Prove that the set $S$ […]

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.