Dual Vector Space and Dual Basis, Some Equality
Let $V$ be a finite dimensional vector space over a field $k$ and let $V^*=\Hom(V, k)$ be the dual vector space of $V$.
Let $\{v_i\}_{i=1}^n$ be a basis of $V$ and let $\{v^i\}_{i=1}^n$ be the dual basis of $V^*$. Then prove that
\[x=\sum_{i=1}^nv^i(x)v_i\]
for any vector $x\in […]

Prove that any Algebraic Closed Field is Infinite
Prove that any algebraic closed field is infinite.
Definition.
A field $F$ is said to be algebraically closed if each non-constant polynomial in $F[x]$ has a root in $F$.
Proof.
Let $F$ be a finite field and consider the polynomial
\[f(x)=1+\prod_{a\in […]

Find Values of $h$ so that the Given Vectors are Linearly Independent
Find the value(s) of $h$ for which the following set of vectors
\[\left \{ \mathbf{v}_1=\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}, \mathbf{v}_2=\begin{bmatrix}
h \\
1 \\
-h
\end{bmatrix}, \mathbf{v}_3=\begin{bmatrix}
1 \\
2h \\
3h+1
[…]

Group Homomorphism, Preimage, and Product of Groups
Let $G, G'$ be groups and let $f:G \to G'$ be a group homomorphism.
Put $N=\ker(f)$. Then show that we have
\[f^{-1}(f(H))=HN.\]
Proof.
$(\subset)$ Take an arbitrary element $g\in f^{-1}(f(H))$. Then we have $f(g)\in f(H)$.
It follows that there exists $h\in H$ […]

Find All Matrices Satisfying a Given Relation
Let $a$ and $b$ be two distinct positive real numbers. Define matrices
\[A:=\begin{bmatrix}
0 & a\\
a & 0
\end{bmatrix}, \,\,
B:=\begin{bmatrix}
0 & b\\
b& 0
\end{bmatrix}.\]
Find all the pairs $(\lambda, X)$, where $\lambda$ is a real number and $X$ is a […]

Finitely Generated Torsion Module Over an Integral Domain Has a Nonzero Annihilator
(a) Let $R$ be an integral domain and let $M$ be a finitely generated torsion $R$-module.
Prove that the module $M$ has a nonzero annihilator.
In other words, show that there is a nonzero element $r\in R$ such that $rm=0$ for all $m\in M$.
Here $r$ does not depend on […]