linear=algebra-eye-catch2

LoadingAdd to solve later

Linear algebra problems and solutions


LoadingAdd to solve later

Sponsored Links

More from my site

  • Dual Vector Space and Dual Basis, Some EqualityDual Vector Space and Dual Basis, Some Equality Let $V$ be a finite dimensional vector space over a field $k$ and let $V^*=\Hom(V, k)$ be the dual vector space of $V$. Let $\{v_i\}_{i=1}^n$ be a basis of $V$ and let $\{v^i\}_{i=1}^n$ be the dual basis of $V^*$. Then prove that \[x=\sum_{i=1}^nv^i(x)v_i\] for any vector $x\in […]
  • Prove that any Algebraic Closed Field is InfiniteProve that any Algebraic Closed Field is Infinite Prove that any algebraic closed field is infinite.     Definition. A field $F$ is said to be algebraically closed if each non-constant polynomial in $F[x]$ has a root in $F$. Proof. Let $F$ be a finite field and consider the polynomial \[f(x)=1+\prod_{a\in […]
  • Find Values of $h$ so that the Given Vectors are Linearly IndependentFind Values of $h$ so that the Given Vectors are Linearly Independent Find the value(s) of $h$ for which the following set of vectors \[\left \{ \mathbf{v}_1=\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{v}_2=\begin{bmatrix} h \\ 1 \\ -h \end{bmatrix}, \mathbf{v}_3=\begin{bmatrix} 1 \\ 2h \\ 3h+1 […]
  • Column Vectors of an Upper Triangular Matrix with Nonzero Diagonal Entries are Linearly IndependentColumn Vectors of an Upper Triangular Matrix with Nonzero Diagonal Entries are Linearly Independent Suppose $M$ is an $n \times n$ upper-triangular matrix. If the diagonal entries of $M$ are all non-zero, then prove that the column vectors are linearly independent. Does the conclusion hold if we do not assume that $M$ has non-zero diagonal entries?   Proof. […]
  • Group Homomorphism, Preimage, and Product of GroupsGroup Homomorphism, Preimage, and Product of Groups Let $G, G'$ be groups and let $f:G \to G'$ be a group homomorphism. Put $N=\ker(f)$. Then show that we have \[f^{-1}(f(H))=HN.\]   Proof. $(\subset)$ Take an arbitrary element $g\in f^{-1}(f(H))$. Then we have $f(g)\in f(H)$. It follows that there exists $h\in H$ […]
  • Find All Matrices Satisfying a Given RelationFind All Matrices Satisfying a Given Relation Let $a$ and $b$ be two distinct positive real numbers. Define matrices \[A:=\begin{bmatrix} 0 & a\\ a & 0 \end{bmatrix}, \,\, B:=\begin{bmatrix} 0 & b\\ b& 0 \end{bmatrix}.\] Find all the pairs $(\lambda, X)$, where $\lambda$ is a real number and $X$ is a […]
  • Finitely Generated Torsion Module Over an Integral Domain Has a Nonzero AnnihilatorFinitely Generated Torsion Module Over an Integral Domain Has a Nonzero Annihilator (a) Let $R$ be an integral domain and let $M$ be a finitely generated torsion $R$-module. Prove that the module $M$ has a nonzero annihilator. In other words, show that there is a nonzero element $r\in R$ such that $rm=0$ for all $m\in M$. Here $r$ does not depend on […]
  • Find the Inverse Linear Transformation if the Linear Transformation is an IsomorphismFind the Inverse Linear Transformation if the Linear Transformation is an Isomorphism Let $T:\R^3 \to \R^3$ be the linear transformation defined by the formula \[T\left(\, \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \,\right)=\begin{bmatrix} x_1+3x_2-2x_3 \\ 2x_1+3x_2 \\ x_2+x_3 \end{bmatrix}.\] Determine whether $T$ is an […]

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.