# inverse-matrix

by Yu ·

Add to solve later

Add to solve later

Add to solve later

### More from my site

- If Squares of Elements in a Group Lie in a Subgroup, then It is a Normal Subgroup Let $H$ be a subgroup of a group $G$. Suppose that for each element $x\in G$, we have $x^2\in H$. Then prove that $H$ is a normal subgroup of $G$. (Purdue University, Abstract Algebra Qualifying Exam) Proof. To show that $H$ is a normal subgroup of […]
- Example of Two Groups and a Subgroup of the Direct Product that is Not of the Form of Direct Product Give an example of two groups $G$ and $H$ and a subgroup $K$ of the direct product $G\times H$ such that $K$ cannot be written as $K=G_1\times H_1$, where $G_1$ and $H_1$ are subgroups of $G$ and $H$, respectively. Solution. Let $G$ be any nontrivial group, and let […]
- Determine the Number of Elements of Order 3 in a Non-Cyclic Group of Order 57 Let $G$ be a group of order $57$. Assume that $G$ is not a cyclic group. Then determine the number of elements in $G$ of order $3$. Proof. Observe the prime factorization $57=3\cdot 19$. Let $n_{19}$ be the number of Sylow $19$-subgroups of $G$. By […]
- Determine the Values of $a$ such that the 2 by 2 Matrix is Diagonalizable Let \[A=\begin{bmatrix} 1-a & a\\ -a& 1+a \end{bmatrix}\] be a $2\times 2$ matrix, where $a$ is a complex number. Determine the values of $a$ such that the matrix $A$ is diagonalizable. (Nagoya University, Linear Algebra Exam Problem) Proof. To […]
- Similar Matrices Have the Same Eigenvalues Show that if $A$ and $B$ are similar matrices, then they have the same eigenvalues and their algebraic multiplicities are the same. Proof. We prove that $A$ and $B$ have the same characteristic polynomial. Then the result follows immediately since eigenvalues and algebraic […]
- A Recursive Relationship for a Power of a Matrix Suppose that the $2 \times 2$ matrix $A$ has eigenvalues $4$ and $-2$. For each integer $n \geq 1$, there are real numbers $b_n , c_n$ which satisfy the relation \[ A^{n} = b_n A + c_n I , \] where $I$ is the identity matrix. Find $b_n$ and $c_n$ for $2 \leq n \leq 5$, and […]
- Galois Group of the Polynomial $x^p-2$. Let $p \in \Z$ be a prime number. Then describe the elements of the Galois group of the polynomial $x^p-2$. Solution. The roots of the polynomial $x^p-2$ are \[ \sqrt[p]{2}\zeta^k, k=0,1, \dots, p-1\] where $\sqrt[p]{2}$ is a real $p$-th root of $2$ and $\zeta$ […]
- A Group of Linear Functions Define the functions $f_{a,b}(x)=ax+b$, where $a, b \in \R$ and $a>0$. Show that $G:=\{ f_{a,b} \mid a, b \in \R, a>0\}$ is a group . The group operation is function composition. Steps. Check one by one the followings. The group operation on $G$ is […]