# inverse-matrix

by Yu ·

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Quiz 12. Find Eigenvalues and their Algebraic and Geometric Multiplicities (a) Let \[A=\begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 &1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}.\] Find the eigenvalues of the matrix $A$. Also give the algebraic multiplicity of each eigenvalue. (b) Let \[A=\begin{bmatrix} 0 & 0 & 0 & 0 […]
- Every $n$-Dimensional Vector Space is Isomorphic to the Vector Space $\R^n$ Let $V$ be a vector space over the field of real numbers $\R$. Prove that if the dimension of $V$ is $n$, then $V$ is isomorphic to $\R^n$. Proof. Since $V$ is an $n$-dimensional vector space, it has a basis \[B=\{\mathbf{v}_1, \dots, […]
- Find a Basis of the Subspace Spanned by Four Polynomials of Degree 3 or Less Let $\calP_3$ be the vector space of all polynomials of degree $3$ or less. Let \[S=\{p_1(x), p_2(x), p_3(x), p_4(x)\},\] where \begin{align*} p_1(x)&=1+3x+2x^2-x^3 & p_2(x)&=x+x^3\\ p_3(x)&=x+x^2-x^3 & p_4(x)&=3+8x+8x^3. \end{align*} (a) […]
- Ascending Chain of Submodules and Union of its Submodules Let $R$ be a ring with $1$. Let $M$ be an $R$-module. Consider an ascending chain \[N_1 \subset N_2 \subset \cdots\] of submodules of $M$. Prove that the union \[\cup_{i=1}^{\infty} N_i\] is a submodule of $M$. Proof. To simplify the notation, let us […]
- Find a Basis and the Dimension of the Subspace of the 4-Dimensional Vector Space Let $V$ be the following subspace of the $4$-dimensional vector space $\R^4$. \[V:=\left\{ \quad\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \R^4 \quad \middle| \quad x_1-x_2+x_3-x_4=0 \quad\right\}.\] Find a basis of the subspace $V$ […]
- Every Finitely Generated Subgroup of Additive Group $\Q$ of Rational Numbers is Cyclic Let $\Q=(\Q, +)$ be the additive group of rational numbers. (a) Prove that every finitely generated subgroup of $(\Q, +)$ is cyclic. (b) Prove that $\Q$ and $\Q \times \Q$ are not isomorphic as groups. Proof. (a) Prove that every finitely generated […]
- Taking the Third Order Taylor Polynomial is a Linear Transformation The space $C^{\infty} (\mathbb{R})$ is the vector space of real functions which are infinitely differentiable. Let $T : C^{\infty} (\mathbb{R}) \rightarrow \mathrm{P}_3$ be the map which takes $f \in C^{\infty}(\mathbb{R})$ to its third order Taylor polynomial, specifically defined […]
- Every Group of Order 20449 is an Abelian Group Prove that every group of order $20449$ is an abelian group. Outline of the Proof Note that $20449=11^2 \cdot 13^2$. Let $G$ be a group of order $20449$. We prove by Sylow's theorem that there are a unique Sylow $11$-subgroup and a unique Sylow $13$-subgroup of […]