Let $C([-1, 1])$ denote the vector space of real-valued functions on the interval $[-1, 1]$. Define the vector subspace
\[W = \{ f \in C([-1, 1]) \mid f(0) = 0 \}.\]

Define the map $T : C([-1, 1]) \rightarrow W$ by $T(f)(x) = f(x) – f(0)$. Determine if $T$ is a linear map. If it is, determine its nullspace and range.

First we must check that $T$ takes values in $W$, as the problem implies but does not prove. Consider $f \in C([-1 , 1])$. The function $T(f)$ lies in $W$ if and only if $T(f)(0) = 0$. We quickly check that it satisfies this condition:in $C([-1, 1])$ lies
\[ T(f)(0) = f(0) – f(0) = 0 . \]

Now that we know $T$ takes values in $W$, we show that it is a linear transformation. We will prove this by showing that $T$ satisfies both of the axioms for linear transformations. First, suppose that $f, g \in C([-1, 1])$. Then
\begin{align*}
T(f+g)(x) &= (f+g)(x) – (f+g)(0) \\
&= f(x) + g(x) – f(0) – g(0) \\
&= f(x) – f(0) + g(x) – g(0) \\
&= T(f)(x) + T(g)(x) . \end{align*}

Now for a scalar $c \in \mathbb{R}$ we have
\begin{align*}
T( cf )(x) &= (cf)(x) – (cf)(0) \\
&= c f(x) – c f(0) \\
&= c ( f(x) – f(0) ) \\
&= c T(f)(x) . \end{align*}

Thus we have proven that $T$ is a linear transformation.

The nullspace of $T$

Next, we will prove that the nullspace of $T$ is
\[\mathcal{N}(T) = \{ f \in C([-1 , 1]) \mid f(x) \mbox{ is a constant function } \}.\]
Suppose that $f \in \calN(T)$, that is, $f$ satisfies
\[0 = T(f)(x) = f(x) – f(0).\]
Then $f(x) = f(0)$ for all $x \in [-1, 1]$. This means that $f$ is a constant function. On the other hand, if $f(x)$ is a constant function, then $T(f)(x) = f(x) – f(0) = 0$. We see that $f$ lies in the nullspace of $T$ if and only if it is a constant function.

The range of $T$

Next, we want to find the range of $T$. We claim that
\[\mathcal{R}(T) = W.\]

Suppose that $f \in W$, that is, it is a function such that $f(0) = 0$. Then
\[T(f)(x) = f(x) – f(0) = f(x),\]
and so we see that $f \in \mathcal{R}(T)$.
Conversely, suppose that $f \in \mathcal{R}(T)$, so that $f = T(g)$ for some $g \in C([-1, 1])$. Then
\[f(0) = T(g)(0) = g(0) – g(0) = 0,\]
and so $f \in W$. Thus every $f \in C([-1, 1])$ lies in the range of $T$ if and only if $f(0) = 0$.

The Range and Null Space of the Zero Transformation of Vector Spaces
Let $U$ and $V$ be vector spaces over a scalar field $\F$.
Define the map $T:U\to V$ by $T(\mathbf{u})=\mathbf{0}_V$ for each vector $\mathbf{u}\in U$.
(a) Prove that $T:U\to V$ is a linear transformation.
(Hence, $T$ is called the zero transformation.)
(b) Determine […]

A Linear Transformation $T: U\to V$ cannot be Injective if $\dim(U) > \dim(V)$
Let $U$ and $V$ be finite dimensional vector spaces over a scalar field $\F$.
Consider a linear transformation $T:U\to V$.
Prove that if $\dim(U) > \dim(V)$, then $T$ cannot be injective (one-to-one).
Hints.
You may use the folowing facts.
A linear […]

An Orthogonal Transformation from $\R^n$ to $\R^n$ is an Isomorphism
Let $\R^n$ be an inner product space with inner product $\langle \mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\trans}\mathbf{y}$ for $\mathbf{x}, \mathbf{y}\in \R^n$.
A linear transformation $T:\R^n \to \R^n$ is called orthogonal transformation if for all $\mathbf{x}, \mathbf{y}\in […]

Find the Matrix Representation of $T(f)(x) = f(x^2)$ if it is a Linear Transformation
For an integer $n > 0$, let $\mathrm{P}_n$ denote the vector space of polynomials with real coefficients of degree $2$ or less. Define the map $T : \mathrm{P}_2 \rightarrow \mathrm{P}_4$ by
\[ T(f)(x) = f(x^2).\]
Determine if $T$ is a linear transformation.
If it is, find […]

The Range and Nullspace of the Linear Transformation $T (f) (x) = x f(x)$
For an integer $n > 0$, let $\mathrm{P}_n$ be the vector space of polynomials of degree at most $n$. The set $B = \{ 1 , x , x^2 , \cdots , x^n \}$ is a basis of $\mathrm{P}_n$, called the standard basis.
Let $T : \mathrm{P}_n \rightarrow \mathrm{P}_{n+1}$ be the map defined by, […]

The Matrix Representation of the Linear Transformation $T (f) (x) = ( x^2 – 2) f(x)$
Let $\mathrm{P}_n$ be the vector space of polynomials of degree at most $n$. The set $B = \{ 1 , x , x^2 , \cdots , x^n \}$ is a basis of $\mathrm{P}_n$, called the standard basis.
Let $T : \mathrm{P}_3 \rightarrow \mathrm{P}_{5}$ be the map defined by, for $f \in […]