Boston-college-exam-eye-catch

LoadingAdd to solve later


LoadingAdd to solve later

More from my site

  • A Group with a Prime Power Order Elements Has Order a Power of the Prime.A Group with a Prime Power Order Elements Has Order a Power of the Prime. Let $p$ be a prime number. Suppose that the order of each element of a finite group $G$ is a power of $p$. Then prove that $G$ is a $p$-group. Namely, the order of $G$ is a power of $p$. Hint. You may use Sylow's theorem. For a review of Sylow's theorem, please check out […]
  • Group Homomorphism Sends the Inverse Element to the Inverse ElementGroup Homomorphism Sends the Inverse Element to the Inverse Element Let $G, G'$ be groups. Let $\phi:G\to G'$ be a group homomorphism. Then prove that for any element $g\in G$, we have \[\phi(g^{-1})=\phi(g)^{-1}.\]     Definition (Group homomorphism). A map $\phi:G\to G'$ is called a group homomorphism […]
  • Find Values of $a, b, c$ such that the Given Matrix is DiagonalizableFind Values of $a, b, c$ such that the Given Matrix is Diagonalizable For which values of constants $a, b$ and $c$ is the matrix \[A=\begin{bmatrix} 7 & a & b \\ 0 &2 &c \\ 0 & 0 & 3 \end{bmatrix}\] diagonalizable? (The Ohio State University, Linear Algebra Final Exam Problem)   Solution. Note that the […]
  • Express a Vector as a Linear Combination of Other VectorsExpress a Vector as a Linear Combination of Other Vectors Express the vector $\mathbf{b}=\begin{bmatrix} 2 \\ 13 \\ 6 \end{bmatrix}$ as a linear combination of the vectors \[\mathbf{v}_1=\begin{bmatrix} 1 \\ 5 \\ -1 \end{bmatrix}, \mathbf{v}_2= \begin{bmatrix} 1 \\ 2 \\ 1 […]
  • Find a Basis For the Null Space of a Given $2\times 3$ MatrixFind a Basis For the Null Space of a Given $2\times 3$ Matrix Let \[A=\begin{bmatrix} 1 & 1 & 0 \\ 1 &1 &0 \end{bmatrix}\] be a matrix. Find a basis of the null space of the matrix $A$. (Remark: a null space is also called a kernel.)   Solution. The null space $\calN(A)$ of the matrix $A$ is by […]
  • Equivalent Conditions to be a Unitary MatrixEquivalent Conditions to be a Unitary Matrix A complex matrix is called unitary if $\overline{A}^{\trans} A=I$. The inner product $(\mathbf{x}, \mathbf{y})$ of complex vector $\mathbf{x}$, $\mathbf{y}$ is defined by $(\mathbf{x}, \mathbf{y}):=\overline{\mathbf{x}}^{\trans} \mathbf{y}$. The length of a complex vector […]
  • A Relation of Nonzero Row Vectors and Column VectorsA Relation of Nonzero Row Vectors and Column Vectors Let $A$ be an $n\times n$ matrix. Suppose that $\mathbf{y}$ is a nonzero row vector such that \[\mathbf{y}A=\mathbf{y}.\] (Here a row vector means a $1\times n$ matrix.) Prove that there is a nonzero column vector $\mathbf{x}$ such that \[A\mathbf{x}=\mathbf{x}.\] (Here a […]
  • Find the Nullity of the Matrix $A+I$ if Eigenvalues are $1, 2, 3, 4, 5$Find the Nullity of the Matrix $A+I$ if Eigenvalues are $1, 2, 3, 4, 5$ Let $A$ be an $n\times n$ matrix. Its only eigenvalues are $1, 2, 3, 4, 5$, possibly with multiplicities. What is the nullity of the matrix $A+I_n$, where $I_n$ is the $n\times n$ identity matrix? (The Ohio State University, Linear Algebra Final Exam […]

Leave a Reply

Your email address will not be published. Required fields are marked *