# field-theory-eyecatch

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Conditions on Coefficients that a Matrix is Nonsingular (a) Let $A=(a_{ij})$ be an $n\times n$ matrix. Suppose that the entries of the matrix $A$ satisfy the following relation. \[|a_{ii}|>|a_{i1}|+\cdots +|a_{i\,i-1}|+|a_{i \, i+1}|+\cdots +|a_{in}|\] for all $1 \leq i \leq n$. Show that the matrix $A$ is nonsingular. (b) Let […]
- How to Find Eigenvalues of a Specific Matrix. Find all eigenvalues of the following $n \times n$ matrix. \[ A=\begin{bmatrix} 0 & 0 & \cdots & 0 &1 \\ 1 & 0 & \cdots & 0 & 0\\ 0 & 1 & \cdots & 0 &0\\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & […]
- The Coordinate Vector for a Polynomial with respect to the Given Basis Let $\mathrm{P}_3$ denote the set of polynomials of degree $3$ or less with real coefficients. Consider the ordered basis \[B = \left\{ 1+x , 1+x^2 , x - x^2 + 2x^3 , 1 - x - x^2 \right\}.\] Write the coordinate vector for the polynomial $f(x) = -3 + 2x^3$ in terms of the basis […]
- Matrices Satisfying the Relation $HE-EH=2E$ Let $H$ and $E$ be $n \times n$ matrices satisfying the relation \[HE-EH=2E.\] Let $\lambda$ be an eigenvalue of the matrix $H$ such that the real part of $\lambda$ is the largest among the eigenvalues of $H$. Let $\mathbf{x}$ be an eigenvector corresponding to $\lambda$. Then […]
- Determine the Dimension of a Mysterious Vector Space From Coordinate Vectors Let $V$ be a vector space and $B$ be a basis for $V$. Let $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4, \mathbf{w}_5$ be vectors in $V$. Suppose that $A$ is the matrix whose columns are the coordinate vectors of $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, […]
- A Square Root Matrix of a Symmetric Matrix with Non-Negative Eigenvalues Let $A$ be an $n\times n$ real symmetric matrix whose eigenvalues are all non-negative real numbers. Show that there is an $n \times n$ real matrix $B$ such that $B^2=A$. Hint. Use the fact that a real symmetric matrix is diagonalizable by a real orthogonal matrix. […]
- An Example of a Matrix that Cannot Be a Commutator Let $I$ be the $2\times 2$ identity matrix. Then prove that $-I$ cannot be a commutator $[A, B]:=ABA^{-1}B^{-1}$ for any $2\times 2$ matrices $A$ and $B$ with determinant $1$. Proof. Assume that $[A, B]=-I$. Then $ABA^{-1}B^{-1}=-I$ implies \[ABA^{-1}=-B. […]
- Find Inverse Matrices Using Adjoint Matrices Let $A$ be an $n\times n$ matrix. The $(i, j)$ cofactor $C_{ij}$ of $A$ is defined to be \[C_{ij}=(-1)^{ij}\det(M_{ij}),\] where $M_{ij}$ is the $(i,j)$ minor matrix obtained from $A$ removing the $i$-th row and $j$-th column. Then consider the $n\times n$ matrix […]