Let $R$ be a commutative ring with $1$ and let $G$ be a finite group with identity element $e$. Let $RG$ be the group ring. Then the map $\epsilon: RG \to R$ defined by
\[\epsilon(\sum_{i=1}^na_i g_i)=\sum_{i=1}^na_i,\]
where $a_i\in R$ and $G=\{g_i\}_{i=1}^n$, is a ring homomorphism, called the augmentation map and the kernel of $\epsilon$ is called the augmentation ideal.

(a) Prove that the augmentation ideal in the group ring $RG$ is generated by $\{g-e \mid g\in G\}$.

(b) Prove that if $G=\langle g\rangle$ is a finite cyclic group generated by $g$, then the augmentation ideal is generated by $g-e$.

(a) The augmentation ideal in $RG$ is generated by $\{g-e \mid g\in G\}$.

Let $I=\ker(\epsilon)$ be the augmentation ideal and let $J$ be the ideal generated by elements of the form $g-e$, $g\in G$.
Since $\epsilon(g-e)=1-1=0$, the generator $g-e\in I$. Hence $J \subset I$.

On the other hand, to show that $I \subset J$ let $\sum_{i=1}^na_i g_i$ be an arbitrary element in the augmentation ideal $I$.
Then we have
\[\epsilon(\sum_{i=1}^na_i g_i)=\sum_{i=1}^na_i=0. \tag{*}\]
Then we have
\begin{align*}
\sum_{i=1}^na_i g_i&=\sum_{i=1}^na_i (g_i-e)+\sum_{i=1}^na_ie\\
&=\sum_{i=1}^na_i (g_i-e)+(\sum_{i=1}^na_i)e\\
&\stackrel{(*)}{=} \sum_{i=1}^na_i (g_i-e).
\end{align*}
Therefore, the element $\sum_{i=1}^na_i g_i$ is in the ideal $J$.
Putting the two inclusions together give $I=J$, which completes the proof of (a).

(b) The augmentation ideal is generated by $g-e$ if $G=\langle g\rangle$ is cyclic.

Now suppose $G=\langle g\rangle$ is a finite cyclic group of order $n$.
By part (a), the augmentation ideal is generated by
\[ \{g^i-e\mid i=0, 1,\dots, n-1\}.\]

Note that we have
\[g^k-e=(g-e)(g^{k-1}+g^{k-2}+\cdots+g+e)\]
for $k \geq 2$.
This implies that $g^k-e$ is contained in the ideal generated by $g-e$ for $k\geq 2$.
Hence the augmentation ideal of the cyclic group $G$ is generated by $g-e$.

A Maximal Ideal in the Ring of Continuous Functions and a Quotient Ring
Let $R$ be the ring of all continuous functions on the interval $[0, 2]$.
Let $I$ be the subset of $R$ defined by
\[I:=\{ f(x) \in R \mid f(1)=0\}.\]
Then prove that $I$ is an ideal of the ring $R$.
Moreover, show that $I$ is maximal and determine […]

Characteristic of an Integral Domain is 0 or a Prime Number
Let $R$ be a commutative ring with $1$. Show that if $R$ is an integral domain, then the characteristic of $R$ is either $0$ or a prime number $p$.
Definition of the characteristic of a ring.
The characteristic of a commutative ring $R$ with $1$ is defined as […]

$(x^3-y^2)$ is a Prime Ideal in the Ring $R[x, y]$, $R$ is an Integral Domain.
Let $R$ be an integral domain. Then prove that the ideal $(x^3-y^2)$ is a prime ideal in the ring $R[x, y]$.
Proof.
Consider the ring $R[t]$, where $t$ is a variable. Since $R$ is an integral domain, so is $R[t]$.
Define the function $\Psi:R[x,y] \to R[t]$ sending […]

Prove the Ring Isomorphism $R[x,y]/(x) \cong R[y]$
Let $R$ be a commutative ring. Consider the polynomial ring $R[x,y]$ in two variables $x, y$.
Let $(x)$ be the principal ideal of $R[x,y]$ generated by $x$.
Prove that $R[x, y]/(x)$ is isomorphic to $R[y]$ as a ring.
Proof.
Define the map $\psi: R[x,y] \to […]

Fundamental Theorem of Finitely Generated Abelian Groups and its application
In this post, we study the Fundamental Theorem of Finitely Generated Abelian Groups, and as an application we solve the following problem.
Problem.
Let $G$ be a finite abelian group of order $n$.
If $n$ is the product of distinct prime numbers, then prove that $G$ is isomorphic […]

The Inverse Image of an Ideal by a Ring Homomorphism is an Ideal
Let $f:R\to R'$ be a ring homomorphism. Let $I'$ be an ideal of $R'$ and let $I=f^{-1}(I)$ be the preimage of $I$ by $f$. Prove that $I$ is an ideal of the ring $R$.
Proof.
To prove $I=f^{-1}(I')$ is an ideal of $R$, we need to check the following two […]