Given Eigenvectors and Eigenvalues, Compute a Matrix Product (Stanford University Exam)

Stanford University Linear Algebra Exam Problems and Solutions

Problem 181

Suppose that $\begin{bmatrix}
1 \\
1
\end{bmatrix}$ is an eigenvector of a matrix $A$ corresponding to the eigenvalue $3$ and that $\begin{bmatrix}
2 \\
1
\end{bmatrix}$ is an eigenvector of $A$ corresponding to the eigenvalue $-2$.
Compute $A^2\begin{bmatrix}
4 \\
3
\end{bmatrix}$.

(Stanford University Linear Algebra Exam Problem)
 
LoadingAdd to solve later

Sponsored Links

Solution.

By the given conditions, we have
\[A\begin{bmatrix}
1 \\
1
\end{bmatrix}=3\begin{bmatrix}
1 \\
1
\end{bmatrix} \text{ and } A \begin{bmatrix}
2 \\
1
\end{bmatrix}=-2\begin{bmatrix}
2 \\
1
\end{bmatrix}. \tag{*}\]

We express the vector $\begin{bmatrix}
4 \\
3
\end{bmatrix}$ as a linear combination of vectors $\begin{bmatrix}
1 \\
1
\end{bmatrix}$ and $\begin{bmatrix}
2 \\
1
\end{bmatrix}$. Let
\[a\begin{bmatrix}
1 \\
1
\end{bmatrix}+b\begin{bmatrix}
2 \\
1
\end{bmatrix}
=\begin{bmatrix}
4 \\
3
\end{bmatrix}\] and we want to determine scalars $a$ and $b$. The augmented matrix of the system is reduced as follows:
\begin{align*}
\left[\begin{array}{rr|r}
1 & 2 & 4 \\
1 &1 &3
\end{array}\right] \to
\left[\begin{array}{rr|r}
1 & 0& 2 \\
0 &1 & 1
\end{array}\right].
\end{align*}

Thus the solution is
\[a=2, b=1\] and hence we obtain the linear combination
\[2\begin{bmatrix}
1 \\
1
\end{bmatrix}+\begin{bmatrix}
2 \\
1
\end{bmatrix}
=\begin{bmatrix}
4 \\
3
\end{bmatrix}.\]


Before computing $A^2\begin{bmatrix}
4 \\
3
\end{bmatrix}$, we first calculate $A\begin{bmatrix}
4 \\
3
\end{bmatrix}$ as follows.
\begin{align*}
A\begin{bmatrix}
4 \\
3
\end{bmatrix}&= A \left(2\begin{bmatrix}
1 \\
1
\end{bmatrix}+\begin{bmatrix}
2 \\
1
\end{bmatrix} \right)\\
&=2A\begin{bmatrix}
1 \\
1
\end{bmatrix}+A\begin{bmatrix}
2 \\
1
\end{bmatrix}\\
&=2\cdot 3\begin{bmatrix}
1 \\
1
\end{bmatrix}+(-2)\begin{bmatrix}
2 \\
1
\end{bmatrix} \text{ by } (*)\\
&=6\begin{bmatrix}
1 \\
1
\end{bmatrix}-2\begin{bmatrix}
2 \\
1
\end{bmatrix}.
\end{align*}


Now, using the result of the above computation, we compute
\begin{align*}
A^2 \begin{bmatrix}
4 \\
3
\end{bmatrix}&= A\left( \begin{bmatrix}
4 \\
3
\end{bmatrix}\right)\\
&=A\left( 6\begin{bmatrix}
1 \\
1
\end{bmatrix}-2\begin{bmatrix}
2 \\
1
\end{bmatrix} \right)\\
&=6A\begin{bmatrix}
1 \\
1
\end{bmatrix}-2A\begin{bmatrix}
2 \\
1
\end{bmatrix}\\
&=6 \cdot 3\begin{bmatrix}
1 \\
1
\end{bmatrix}-2(-2)\begin{bmatrix}
2 \\
1
\end{bmatrix} \text{ by } (*)\\
&=\begin{bmatrix}
26 \\
22
\end{bmatrix}.
\end{align*}

Therefore we obtained
\[A^2\begin{bmatrix}
4 \\
3
\end{bmatrix}=\begin{bmatrix}
26 \\
22
\end{bmatrix}.\]


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Johns Hopkins Linear Algebra Exam Problems and Solutions
Determine Eigenvalues, Eigenvectors, Diagonalizable From a Partial Information of a Matrix

Suppose the following information is known about a $3\times 3$ matrix $A$. \[A\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}=6\begin{bmatrix} 1...

Close