# Group Homomorphism Sends the Inverse Element to the Inverse Element ## Problem 444

Let $G, G’$ be groups. Let $\phi:G\to G’$ be a group homomorphism.
Then prove that for any element $g\in G$, we have
$\phi(g^{-1})=\phi(g)^{-1}.$ Add to solve later

## Definition (Group homomorphism).

A map $\phi:G\to G’$ is called a group homomorphism if
$\phi(ab)=\phi(a)\phi(b)$ for any elements $a, b\in G$.

## Proof.

Let $e, e’$ be the identity elements of $G, G’$, respectively.
First we claim that
$\phi(e)=e’.$ In fact, we have
\begin{align*}
\phi(e)&=\phi(ee)=\phi(e)\phi(e) \tag{*}
\end{align*}
since $\phi$ is a group homomorphism.
Thus, multiplying by $\phi(e)^{-1}$ on the left, we obtain
\begin{align*}
&e’=\phi(e)^{-1}\phi(e)\\
&=\phi(e)^{-1}\phi(e)\phi(e) && \text{by (*)}\\
&=e’\phi(e)=\phi(e).
\end{align*}
Hence the claim is proved.

Then we have
\begin{align*}
&e’=\phi(e) && \text{by claim}\\
&=\phi(gg^{-1})\\
&=\phi(g)\phi(g^{-1}) && \text{since $\phi$ is a group homomorphism}.
\end{align*}

It follows that we have
\begin{align*}
\phi(g)^{-1}&=\phi(g)^{-1}e’\\
&=\phi(g)^{-1}\phi(g)\phi(g^{-1})\\
&=e’\phi(g^{-1})\\
&=\phi(g^{-1}).
\end{align*}
This completes the proof. Add to solve later

### 2 Responses

1. 06/08/2017

[…] Suppose that we have [phi(a)=phi(b)] for some elements $a, bin G$. Then the properties of the homomorphism $phi$ imply that begin{align*} phi(a)phi(b)^{-1}=e’\ phi(a)phi(b^{-1})=e’\ phi(ab^{-1})=e’. end{align*} In the second step, we used the fact $phi(b)^{-1}=phi(b^{-1})$, which is proved in the post “Group Homomorphism Sends the Inverse Element to the Inverse Element“. […]

2. 06/25/2017

[…] In the second step, we used the fact $f(g_2^{-1})=f(g_2)^{-1}$, which is proved in the post “Group Homomorphism Sends the Inverse Element to the Inverse Element“. […]

This site uses Akismet to reduce spam. Learn how your comment data is processed.

###### More in Group Theory ##### Injective Group Homomorphism that does not have Inverse Homomorphism

Let $A=B=\Z$ be the additive group of integers. Define a map $\phi: A\to B$ by sending $n$ to $2n$ for...

Close