Group of Order $pq$ is Either Abelian or the Center is Trivial

Group Theory Problems and Solutions

Problem 30

Let $G$ be a group of order $|G|=pq$, where $p$ and $q$ are (not necessarily distinct) prime numbers.

Then show that $G$ is either abelian group or the center $Z(G)=1$.

LoadingAdd to solve later

Sponsored Links


Hint.

Use the result of the problem “If the Quotient by the Center is Cyclic, then the Group is Abelian”.

Proof.

Since the center $Z(G)$ is a (normal) subgroup  of $G$, the order of $Z(G)$ divides the order of $G$ by Lagrange’s theorem.
Thus the order of $Z(G)$ is one of $1,p,q,pq$.

Suppose that $Z(G)\neq 1$.
Then the order of the quotient group $G/Z(G)$ is one of $1,p,q$.
Hence the group $G/Z(G)$ is a cyclic group.

We conclude that $G$ is abelian group by Problem “If the Quotient by the Center is Cyclic, then the Group is Abelian”.

Therefore, either $Z(G)=1$ or $G$ is abelian.


LoadingAdd to solve later

Sponsored Links

More from my site

  • The Index of the Center of a Non-Abelian $p$-Group is Divisible by $p^2$The Index of the Center of a Non-Abelian $p$-Group is Divisible by $p^2$ Let $p$ be a prime number. Let $G$ be a non-abelian $p$-group. Show that the index of the center of $G$ is divisible by $p^2$. Proof. Suppose the order of the group $G$ is $p^a$, for some $a \in \Z$. Let $Z(G)$ be the center of $G$. Since $Z(G)$ is a subgroup of $G$, the order […]
  • If the Quotient by the Center is Cyclic, then the Group is AbelianIf the Quotient by the Center is Cyclic, then the Group is Abelian Let $Z(G)$ be the center of a group $G$. Show that if $G/Z(G)$ is a cyclic group, then $G$ is abelian. Steps. Write $G/Z(G)=\langle \bar{g} \rangle$ for some $g \in G$. Any element $x\in G$ can be written as $x=g^a z$ for some $z \in Z(G)$ and $a \in \Z$. Using […]
  • Group of Order 18 is SolvableGroup of Order 18 is Solvable Let $G$ be a finite group of order $18$. Show that the group $G$ is solvable.   Definition Recall that a group $G$ is said to be solvable if $G$ has a subnormal series \[\{e\}=G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_n=G\] such […]
  • Use Lagrange’s Theorem to Prove Fermat’s Little TheoremUse Lagrange’s Theorem to Prove Fermat’s Little Theorem Use Lagrange's Theorem in the multiplicative group $(\Zmod{p})^{\times}$ to prove Fermat's Little Theorem: if $p$ is a prime number then $a^p \equiv a \pmod p$ for all $a \in \Z$.   Before the proof, let us recall Lagrange's Theorem. Lagrange's Theorem If $G$ is a […]
  • Abelian Normal subgroup, Quotient Group, and Automorphism GroupAbelian Normal subgroup, Quotient Group, and Automorphism Group Let $G$ be a finite group and let $N$ be a normal abelian subgroup of $G$. Let $\Aut(N)$ be the group of automorphisms of $G$. Suppose that the orders of groups $G/N$ and $\Aut(N)$ are relatively prime. Then prove that $N$ is contained in the center of […]
  • A Group of Order the Square of a Prime is AbelianA Group of Order the Square of a Prime is Abelian Suppose the order of a group $G$ is $p^2$, where $p$ is a prime number. Show that (a) the group $G$ is an abelian group, and (b) the group $G$ is isomorphic to either $\Zmod{p^2}$ or $\Zmod{p} \times \Zmod{p}$ without using the fundamental theorem of abelian […]
  • Normal Subgroup Whose Order is Relatively Prime to Its IndexNormal Subgroup Whose Order is Relatively Prime to Its Index Let $G$ be a finite group and let $N$ be a normal subgroup of $G$. Suppose that the order $n$ of $N$ is relatively prime to the index $|G:N|=m$. (a) Prove that $N=\{a\in G \mid a^n=e\}$. (b) Prove that $N=\{b^m \mid b\in G\}$.   Proof. Note that as $n$ and […]
  • No Finite Abelian Group is DivisibleNo Finite Abelian Group is Divisible A nontrivial abelian group $A$ is called divisible if for each element $a\in A$ and each nonzero integer $k$, there is an element $x \in A$ such that $x^k=a$. (Here the group operation of $A$ is written multiplicatively. In additive notation, the equation is written as $kx=a$.) That […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Group Theory
Group Theory Problems and Solutions in Mathematics
Basic Properties of Characteristic Groups

Definition (automorphism). An isomorphism from a group $G$ to itself is called an automorphism of $G$. The set of all...

Close