The Sum of Subspaces is a Subspace of a Vector Space
Let $V$ be a vector space over a field $K$.
If $W_1$ and $W_2$ are subspaces of $V$, then prove that the subset
\[W_1+W_2:=\{\mathbf{x}+\mathbf{y} \mid \mathbf{x}\in W_1, \mathbf{y}\in W_2\}\]
is a subspace of the vector space $V$.
Proof.
We prove the […]

Quiz 13 (Part 1) Diagonalize a Matrix
Let
\[A=\begin{bmatrix}
2 & -1 & -1 \\
-1 &2 &-1 \\
-1 & -1 & 2
\end{bmatrix}.\]
Determine whether the matrix $A$ is diagonalizable. If it is diagonalizable, then diagonalize $A$.
That is, find a nonsingular matrix $S$ and a diagonal matrix $D$ such that […]

Is the Product of a Nilpotent Matrix and an Invertible Matrix Nilpotent?
A square matrix $A$ is called nilpotent if there exists a positive integer $k$ such that $A^k=O$, where $O$ is the zero matrix.
(a) If $A$ is a nilpotent $n \times n$ matrix and $B$ is an $n\times n$ matrix such that $AB=BA$. Show that the product $AB$ is nilpotent.
(b) Let $P$ […]

Determine Trigonometric Functions with Given Conditions
(a) Find a function
\[g(\theta) = a \cos(\theta) + b \cos(2 \theta) + c \cos(3 \theta)\]
such that $g(0) = g(\pi/2) = g(\pi) = 0$, where $a, b, c$ are constants.
(b) Find real numbers $a, b, c$ such that the function
\[g(\theta) = a \cos(\theta) + b \cos(2 \theta) + c \cos(3 […]

Isomorphism Criterion of Semidirect Product of Groups
Let $A$, $B$ be groups. Let $\phi:B \to \Aut(A)$ be a group homomorphism.
The semidirect product $A \rtimes_{\phi} B$ with respect to $\phi$ is a group whose underlying set is $A \times B$ with group operation
\[(a_1, b_1)\cdot (a_2, b_2)=(a_1\phi(b_1)(a_2), b_1b_2),\]
where $a_i […]

How Many Solutions for $x+x=1$ in a Ring?
Is there a (not necessarily commutative) ring $R$ with $1$ such that the equation
\[x+x=1 \]
has more than one solutions $x\in R$?
Solution.
We claim that there is at most one solution $x$ in the ring $R$.
Suppose that we have two solutions $r, s \in R$. That is, we […]

Transpose of a Matrix and Eigenvalues and Related Questions
Let $A$ be an $n \times n$ real matrix. Prove the followings.
(a) The matrix $AA^{\trans}$ is a symmetric matrix.
(b) The set of eigenvalues of $A$ and the set of eigenvalues of $A^{\trans}$ are equal.
(c) The matrix $AA^{\trans}$ is non-negative definite.
(An $n\times n$ […]