# Cayley-Hamilton

by Yu ·

Add to solve later

Add to solve later

Add to solve later

### More from my site

- The Ring $\Z[\sqrt{2}]$ is a Euclidean Domain Prove that the ring of integers \[\Z[\sqrt{2}]=\{a+b\sqrt{2} \mid a, b \in \Z\}\] of the field $\Q(\sqrt{2})$ is a Euclidean Domain. Proof. First of all, it is clear that $\Z[\sqrt{2}]$ is an integral domain since it is contained in $\R$. We use the […]
- Every Finite Group Having More than Two Elements Has a Nontrivial Automorphism Prove that every finite group having more than two elements has a nontrivial automorphism. (Michigan State University, Abstract Algebra Qualifying Exam) Proof. Let $G$ be a finite group and $|G|> 2$. Case When $G$ is a Non-Abelian Group Let us first […]
- Show the Subset of the Vector Space of Polynomials is a Subspace and Find its Basis Let $P_3$ be the vector space over $\R$ of all degree three or less polynomial with real number coefficient. Let $W$ be the following subset of $P_3$. \[W=\{p(x) \in P_3 \mid p'(-1)=0 \text{ and } p^{\prime\prime}(1)=0\}.\] Here $p'(x)$ is the first derivative of $p(x)$ and […]
- Determine a Value of Linear Transformation From $\R^3$ to $\R^2$ Let $T$ be a linear transformation from $\R^3$ to $\R^2$ such that \[ T\left(\, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}\,\right) =\begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ and }T\left(\, \begin{bmatrix} 0 \\ 1 \\ 1 […]
- A Relation between the Dot Product and the Trace Let $\mathbf{v}$ and $\mathbf{w}$ be two $n \times 1$ column vectors. Prove that $\tr ( \mathbf{v} \mathbf{w}^\trans ) = \mathbf{v}^\trans \mathbf{w}$. Solution. Suppose the vectors have components \[\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n […]
- Determine Whether Each Set is a Basis for $\R^3$ Determine whether each of the following sets is a basis for $\R^3$. (a) $S=\left\{\, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 4 \end{bmatrix} […]
- Quiz 12. Find Eigenvalues and their Algebraic and Geometric Multiplicities (a) Let \[A=\begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 &1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}.\] Find the eigenvalues of the matrix $A$. Also give the algebraic multiplicity of each eigenvalue. (b) Let \[A=\begin{bmatrix} 0 & 0 & 0 & 0 […]
- Short Exact Sequence and Finitely Generated Modules Let $R$ be a ring with $1$. Let \[0\to M\xrightarrow{f} M' \xrightarrow{g} M^{\prime\prime} \to 0 \tag{*}\] be an exact sequence of left $R$-modules. Prove that if $M$ and $M^{\prime\prime}$ are finitely generated, then $M'$ is also finitely generated. […]