HW_frontpage

LoadingAdd to solve later

HW_frontpage


LoadingAdd to solve later

More from my site

  • Solving a System of Linear Equations By Using an Inverse MatrixSolving a System of Linear Equations By Using an Inverse Matrix Consider the system of linear equations \begin{align*} x_1&= 2, \\ -2x_1 + x_2 &= 3, \\ 5x_1-4x_2 +x_3 &= 2 \end{align*} (a) Find the coefficient matrix and its inverse matrix. (b) Using the inverse matrix, solve the system of linear equations. (The Ohio […]
  • How to Prove a Matrix is Nonsingular in 10 SecondsHow to Prove a Matrix is Nonsingular in 10 Seconds Using the numbers appearing in \[\pi=3.1415926535897932384626433832795028841971693993751058209749\dots\] we construct the matrix \[A=\begin{bmatrix} 3 & 14 &1592& 65358\\ 97932& 38462643& 38& 32\\ 7950& 2& 8841& 9716\\ 939937510& 5820& 974& […]
  • Eigenvalues and their Algebraic Multiplicities of a Matrix with a VariableEigenvalues and their Algebraic Multiplicities of a Matrix with a Variable Determine all eigenvalues and their algebraic multiplicities of the matrix \[A=\begin{bmatrix} 1 & a & 1 \\ a &1 &a \\ 1 & a & 1 \end{bmatrix},\] where $a$ is a real number.   Proof. To find eigenvalues we first compute the characteristic polynomial of the […]
  • Powers of a Diagonal MatrixPowers of a Diagonal Matrix Let $A=\begin{bmatrix} a & 0\\ 0& b \end{bmatrix}$. Show that (1) $A^n=\begin{bmatrix} a^n & 0\\ 0& b^n \end{bmatrix}$ for any $n \in \N$. (2) Let $B=S^{-1}AS$, where $S$ be an invertible $2 \times 2$ matrix. Show that $B^n=S^{-1}A^n S$ for any $n \in […]
  • True or False Problems of Vector Spaces and Linear TransformationsTrue or False Problems of Vector Spaces and Linear Transformations These are True or False problems. For each of the following statements, determine if it contains a wrong information or not. Let $A$ be a $5\times 3$ matrix. Then the range of $A$ is a subspace in $\R^3$. The function $f(x)=x^2+1$ is not in the vector space $C[-1,1]$ because […]
  • Given Eigenvectors and Eigenvalues, Compute a Matrix Product (Stanford University Exam)Given Eigenvectors and Eigenvalues, Compute a Matrix Product (Stanford University Exam) Suppose that $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of a matrix $A$ corresponding to the eigenvalue $3$ and that $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is an eigenvector of $A$ corresponding to the eigenvalue $-2$. Compute $A^2\begin{bmatrix} 4 […]
  • Subgroup of Finite Index Contains a Normal Subgroup of Finite IndexSubgroup of Finite Index Contains a Normal Subgroup of Finite Index Let $G$ be a group and let $H$ be a subgroup of finite index. Then show that there exists a normal subgroup $N$ of $G$ such that $N$ is of finite index in $G$ and $N\subset H$.   Proof. The group $G$ acts on the set of left cosets $G/H$ by left multiplication. Hence […]
  • Restriction of a Linear Transformation on the x-z Plane is a Linear TransformationRestriction of a Linear Transformation on the x-z Plane is a Linear Transformation Let $T:\R^3 \to \R^3$ be a linear transformation and suppose that its matrix representation with respect to the standard basis is given by the matrix \[A=\begin{bmatrix} 1 & 0 & 2 \\ 0 &3 &0 \\ 4 & 0 & 5 \end{bmatrix}.\] (a) Prove that the linear transformation […]

Leave a Reply

Your email address will not be published. Required fields are marked *