HW_frontpage

HW_frontpage

LoadingAdd to solve later

Sponsored Links

HW_frontpage


LoadingAdd to solve later

Sponsored Links

More from my site

  • Every Diagonalizable Nilpotent Matrix is the Zero MatrixEvery Diagonalizable Nilpotent Matrix is the Zero Matrix Prove that if $A$ is a diagonalizable nilpotent matrix, then $A$ is the zero matrix $O$.   Definition (Nilpotent Matrix) A square matrix $A$ is called nilpotent if there exists a positive integer $k$ such that $A^k=O$. Proof. Main Part Since $A$ is […]
  • A Matrix Equation of a Symmetric Matrix and the Limit of its SolutionA Matrix Equation of a Symmetric Matrix and the Limit of its Solution Let $A$ be a real symmetric $n\times n$ matrix with $0$ as a simple eigenvalue (that is, the algebraic multiplicity of the eigenvalue $0$ is $1$), and let us fix a vector $\mathbf{v}\in \R^n$. (a) Prove that for sufficiently small positive real $\epsilon$, the equation […]
  • Construction of a Symmetric Matrix whose Inverse Matrix is ItselfConstruction of a Symmetric Matrix whose Inverse Matrix is Itself Let $\mathbf{v}$ be a nonzero vector in $\R^n$. Then the dot product $\mathbf{v}\cdot \mathbf{v}=\mathbf{v}^{\trans}\mathbf{v}\neq 0$. Set $a:=\frac{2}{\mathbf{v}^{\trans}\mathbf{v}}$ and define the $n\times n$ matrix $A$ by \[A=I-a\mathbf{v}\mathbf{v}^{\trans},\] where […]
  • Normal Subgroups Intersecting Trivially Commute in a GroupNormal Subgroups Intersecting Trivially Commute in a Group Let $A$ and $B$ be normal subgroups of a group $G$. Suppose $A\cap B=\{e\}$, where $e$ is the unit element of the group $G$. Show that for any $a \in A$ and $b \in B$ we have $ab=ba$. Hint. Consider the commutator of $a$ and $b$, that […]
  • The Preimage of Prime ideals are Prime IdealsThe Preimage of Prime ideals are Prime Ideals Let $f: R\to R'$ be a ring homomorphism. Let $P$ be a prime ideal of the ring $R'$. Prove that the preimage $f^{-1}(P)$ is a prime ideal of $R$.   Proof. The preimage of an ideal by a ring homomorphism is an ideal. (See the post "The inverse image of an ideal by […]
  • The Order of a Conjugacy Class Divides the Order of the GroupThe Order of a Conjugacy Class Divides the Order of the Group Let $G$ be a finite group. The centralizer of an element $a$ of $G$ is defined to be \[C_G(a)=\{g\in G \mid ga=ag\}.\] A conjugacy class is a set of the form \[\Cl(a)=\{bab^{-1} \mid b\in G\}\] for some $a\in G$. (a) Prove that the centralizer of an element of $a$ […]
  • If a Finite Group Acts on a Set Freely and Transitively, then the Numbers of Elements are the SameIf a Finite Group Acts on a Set Freely and Transitively, then the Numbers of Elements are the Same Let $G$ be a finite group and let $S$ be a non-empty set. Suppose that $G$ acts on $S$ freely and transitively. Prove that $|G|=|S|$. That is, the number of elements in $G$ and $S$ are the same.   Definition (Free and Transitive Group Action) A group action of […]
  • Isomorphism Criterion of Semidirect Product of GroupsIsomorphism Criterion of Semidirect Product of Groups Let $A$, $B$ be groups. Let $\phi:B \to \Aut(A)$ be a group homomorphism. The semidirect product $A \rtimes_{\phi} B$ with respect to $\phi$ is a group whose underlying set is $A \times B$ with group operation \[(a_1, b_1)\cdot (a_2, b_2)=(a_1\phi(b_1)(a_2), b_1b_2),\] where $a_i […]

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.