# If $A$ is a Skew-Symmetric Matrix, then $I+A$ is Nonsingular and $(I-A)(I+A)^{-1}$ is Orthogonal ## Problem 468

Let $A$ be an $n\times n$ real skew-symmetric matrix.

(a) Prove that the matrices $I-A$ and $I+A$ are nonsingular.

(b) Prove that
$B=(I-A)(I+A)^{-1}$ is an orthogonal matrix. Add to solve later

## Proof.

### (a) Prove that the matrices $I-A$ and $I+A$ are nonsingular.

The eigenvalues of a skew-symmetric matrix are either $0$ or purely imaginary numbers.
(See the post “Eigenvalues of Real Skew-Symmetric Matrix are Zero or Purely Imaginary and the Rank is Even” for a proof of this fact.)

Namely, the eigenvalues of $A$ are of the form $ib$, where $i=\sqrt{-1}$ and $b$ is a real number.

The eigenvalues of the matrix $I\pm A$ are of the form $1\pm \lambda$, where $\lambda$ is an eigenvalue of $A$.
Since $\lambda=ib$, we have $1\pm \lambda \neq 0$.
Thus, $I\pm A$ do not have $0$ as an eigenvalue.

Since the determinant is the product of all eigenvalues, it follows that the determinants of the matrices $I\pm A$ are not zero, hence they are nonsingular.

### (b) Prove that $B=(I-A)(I+A)^{-1}$ is an orthogonal matrix.

Note that by part (a), the matrix $I+A$ is nonsingular, hence it is invertible.
Thus the expression $B=(I-A)(I+A)^{-1}$ is well-defined.

Our goal is to show that $B^{\trans}B=I$.
Recall the following basic properties of transpose and inverse matrices.

1. $(AB)^{\trans}=B^{\trans} A^{\trans}$
2. $(A^{-1})^{\trans}=(A^{\trans})^{-1}$ if $A$ is invertible.
3. $(A+B)^{\trans}=A^{\trans}+B^{\trans}$.

We have
\begin{align*}
B^{\trans}&=\left(\, (I-A)(I+A)^{-1} \,\right)^{\trans}\\
&=\left(\, (I+A)^{-1} \,\right)^{\trans}(I-A)^{\trans} && \text{by property 1}\\
&=\left(\, (I+A)^{\trans} \,\right)^{-1}(I-A)^{\trans} && \text{by property 2}\\
&=(I^{\trans}+A^{\trans})^{-1}(I^{\trans}-A^{\trans}) && \text{by property 3}\\
&=(I+A^{\trans})^{-1}(I-A^{\trans}) && \text{since } I^{\trans}=I\\
&=(I-A)^{-1}(I+A),
\end{align*}
where the last step follows since $A$ is skew-symmetric: $A^{\trans}=-A$.

Hence we have
\begin{align*}
B^{\trans} B&=(I-A)^{-1}(I+A)(I-A)(I+A)^{-1}.
\end{align*}

We note that the middle two matrices $I+A$ and $I-A$ commutes.
In fact we have
\begin{align*}
(I+A)(I-A)&=(I+A)I-(I+A)A=I+A-A-A^2=I-A^2 \text{ and }\\
(I-A)(I+A)&=(I-A)I+(I-A)A=I-A+A-A^2=I-A^2.
\end{align*}
It yields that
$(I+A)(I-A)=(I-A)(I+A) \tag{*}.$

Hence we have
\begin{align*}
&B^{\trans} B\\
&=(I-A)^{-1}(I+A)(I-A)(I+A)^{-1}\\
&=(I-A)^{-1}(I-A)(I+A)(I+A)^{-1} && \text{ by (*)}\\
&=I\cdot I=I,
\end{align*}
and we have obtained $B^{\trans}B=I$.
Therefore, the matrix $B$ is an orthogonal matrix. Add to solve later

### 1 Response

1. 06/21/2017

[…] For a proof, see the post “If $A$ is a Skew-Symmetric Matrix, then $I+A$ is Nonsingular and $(I-A)(I+A)^{-1}$ is Orthogonal“. […]

This site uses Akismet to reduce spam. Learn how your comment data is processed.

###### More in Linear Algebra ##### Diagonalize a 2 by 2 Matrix $A$ and Calculate the Power $A^{100}$

Let $A=\begin{bmatrix} 1 & 2\\ 4& 3 \end{bmatrix}.$ (a) Find eigenvalues of the matrix $A$. (b) Find eigenvectors for each...

Close