If $A$ is a Skew-Symmetric Matrix, then $I+A$ is Nonsingular and $(I-A)(I+A)^{-1}$ is Orthogonal

Linear algebra problems and solutions

Problem 468

Let $A$ be an $n\times n$ real skew-symmetric matrix.

(a) Prove that the matrices $I-A$ and $I+A$ are nonsingular.

(b) Prove that
\[B=(I-A)(I+A)^{-1}\] is an orthogonal matrix.

 
LoadingAdd to solve later

Sponsored Links


Proof.

(a) Prove that the matrices $I-A$ and $I+A$ are nonsingular.

The eigenvalues of a skew-symmetric matrix are either $0$ or purely imaginary numbers.
(See the post “Eigenvalues of Real Skew-Symmetric Matrix are Zero or Purely Imaginary and the Rank is Even” for a proof of this fact.)

Namely, the eigenvalues of $A$ are of the form $ib$, where $i=\sqrt{-1}$ and $b$ is a real number.

The eigenvalues of the matrix $I\pm A$ are of the form $1\pm \lambda$, where $\lambda$ is an eigenvalue of $A$.
Since $\lambda=ib$, we have $1\pm \lambda \neq 0$.
Thus, $I\pm A$ do not have $0$ as an eigenvalue.

Since the determinant is the product of all eigenvalues, it follows that the determinants of the matrices $I\pm A$ are not zero, hence they are nonsingular.

(b) Prove that $B=(I-A)(I+A)^{-1}$ is an orthogonal matrix.

Note that by part (a), the matrix $I+A$ is nonsingular, hence it is invertible.
Thus the expression $B=(I-A)(I+A)^{-1}$ is well-defined.

Our goal is to show that $B^{\trans}B=I$.
Recall the following basic properties of transpose and inverse matrices.

  1. $(AB)^{\trans}=B^{\trans} A^{\trans}$
  2. $(A^{-1})^{\trans}=(A^{\trans})^{-1}$ if $A$ is invertible.
  3. $(A+B)^{\trans}=A^{\trans}+B^{\trans}$.

We have
\begin{align*}
B^{\trans}&=\left(\, (I-A)(I+A)^{-1} \,\right)^{\trans}\\
&=\left(\, (I+A)^{-1} \,\right)^{\trans}(I-A)^{\trans} && \text{by property 1}\\
&=\left(\, (I+A)^{\trans} \,\right)^{-1}(I-A)^{\trans} && \text{by property 2}\\
&=(I^{\trans}+A^{\trans})^{-1}(I^{\trans}-A^{\trans}) && \text{by property 3}\\
&=(I+A^{\trans})^{-1}(I-A^{\trans}) && \text{since } I^{\trans}=I\\
&=(I-A)^{-1}(I+A),
\end{align*}
where the last step follows since $A$ is skew-symmetric: $A^{\trans}=-A$.

Hence we have
\begin{align*}
B^{\trans} B&=(I-A)^{-1}(I+A)(I-A)(I+A)^{-1}.
\end{align*}

We note that the middle two matrices $I+A$ and $I-A$ commutes.
In fact we have
\begin{align*}
(I+A)(I-A)&=(I+A)I-(I+A)A=I+A-A-A^2=I-A^2 \text{ and }\\
(I-A)(I+A)&=(I-A)I+(I-A)A=I-A+A-A^2=I-A^2.
\end{align*}
It yields that
\[(I+A)(I-A)=(I-A)(I+A) \tag{*}.\]

Hence we have
\begin{align*}
&B^{\trans} B\\
&=(I-A)^{-1}(I+A)(I-A)(I+A)^{-1}\\
&=(I-A)^{-1}(I-A)(I+A)(I+A)^{-1} && \text{ by (*)}\\
&=I\cdot I=I,
\end{align*}
and we have obtained $B^{\trans}B=I$.
Therefore, the matrix $B$ is an orthogonal matrix.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

1 Response

  1. 06/21/2017

    […] For a proof, see the post “If $A$ is a Skew-Symmetric Matrix, then $I+A$ is Nonsingular and $(I-A)(I+A)^{-1}$ is Orthogonal“. […]

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Problems and Solutions of Eigenvalue, Eigenvector in Linear Algebra
Diagonalize a 2 by 2 Matrix $A$ and Calculate the Power $A^{100}$

Let \[A=\begin{bmatrix} 1 & 2\\ 4& 3 \end{bmatrix}.\] (a) Find eigenvalues of the matrix $A$. (b) Find eigenvectors for each...

Close