If $A$ is an Idempotent Matrix, then When $I-kA$ is an Idempotent Matrix?

Idempotent Matrix Problems and Solutions in Linear Algebra

Problem 426

A square matrix $A$ is called idempotent if $A^2=A$.

(a) Suppose $A$ is an $n \times n$ idempotent matrix and let $I$ be the $n\times n$ identity matrix. Prove that the matrix $I-A$ is an idempotent matrix.

(b) Assume that $A$ is an $n\times n$ nonzero idempotent matrix. Then determine all integers $k$ such that the matrix $I-kA$ is idempotent.

(c) Let $A$ and $B$ be $n\times n$ matrices satisfying
\[AB=A \text{ and } BA=B.\] Then prove that $A$ is an idempotent matrix.

 
LoadingAdd to solve later

Sponsored Links


 

Proof.

(a) Prove that the matrix $I-A$ is an idempotent matrix.

To prove that $I-A$ is an idempotent matrix, we show that $(I-A)^2=I-A$.
We compute
\begin{align*}
(I-A)^2&=(I-A)(I-A)\\
&=I(I-A)-A(I-A)\\
&=I-A-A+A^2\\
&=I-2A+A^2\\
&=I-2A+A && \text{since $A$ is idempotent}\\
&=I-A.
\end{align*}
Thus, we have $(I-A)^2=I-A$ and $I-A$ is an idempotent matrix.

(b) Determine all integers $k$ such that the matrix $I-kA$ is idempotent.

Let us find out the condition on $k$ so that $I-kA$ is an idempotent matrix.
We have
\begin{align*}
&(I-kA)^2=(I-kA)(I-kA)\\
&=I(I-kA)-kA(I-kA)\\
&=I-kA-kA+k^2A^2\\
&=I-2kA+k^2A && \text{ since $A$ is idempotent}\\
&=I-(2k-k^2)A.
\end{align*}

It follows that $I-kA$ is idempotent if and only if $I-kA=I-(2k-k^2)A$, or equivalently $(k^2-k)A=O$, the zero matrix.
Since $A$ is not the zero matrix, we see that $I-kI$ is idempotent if and only if $k^2-k=0$.

Since $k^2-k=k(k-1)$, we conclude that $I-kA$ is an idempotent matrix if and only if $k=0, 1$.

(c) Prove that $A$ is an idempotent matrix.

Let $A$ and $B$ be $n\times n$ matrices satisfying
\[AB=A \tag{*}\] and
\[ BA=B. \tag{**}\] Our goal is to show that $A^2=A$.
We compute
\begin{align*}
&A^2=AA\\
&=(AB)A && \text{by (*)}\\
&=A(BA)\\
&=AB && \text{by (**)}\\
&=A && \text{by (*)}.
\end{align*}
Therefore, we have obtained the identity $A^2=A$, and we conclude that $A$ is an idempotent matrix.

Related Question.

Problem.
(a) Let $\mathbf{u}$ be a vector in $\R^n$ with length $1$.
Define the matrix $P$ to be $P=\mathbf{u}\mathbf{u}^{\trans}$.

Prove that $P$ is an idempotent matrix.


(b) Suppose that $\mathbf{u}$ and $\mathbf{v}$ be unit vectors in $\R^n$ such that $\mathbf{u}$ and $\mathbf{v}$ are orthogonal.
Let $Q=\mathbf{u}\mathbf{u}^{\trans}+\mathbf{v}\mathbf{v}^{\trans}$.

Prove that $Q$ is an idempotent matrix.


(c) Prove that each nonzero vector of the form $a\mathbf{u}+b\mathbf{v}$ for some $a, b\in \R$ is an eigenvector corresponding to the eigenvalue $1$ for the matrix $Q$ in part (b).

The proofs are given in the post ↴
Unit Vectors and Idempotent Matrices


LoadingAdd to solve later

Sponsored Links

More from my site

  • Idempotent Matrix and its EigenvaluesIdempotent Matrix and its Eigenvalues Let $A$ be an $n \times n$ matrix. We say that $A$ is idempotent if $A^2=A$. (a) Find a nonzero, nonidentity idempotent matrix. (b) Show that eigenvalues of an idempotent matrix $A$ is either $0$ or $1$. (The Ohio State University, Linear Algebra Final Exam […]
  • Idempotent Matrices. 2007 University of Tokyo Entrance Exam ProblemIdempotent Matrices. 2007 University of Tokyo Entrance Exam Problem For a real number $a$, consider $2\times 2$ matrices $A, P, Q$ satisfying the following five conditions. $A=aP+(a+1)Q$ $P^2=P$ $Q^2=Q$ $PQ=O$ $QP=O$, where $O$ is the $2\times 2$ zero matrix. Then do the following problems. (a) Prove that […]
  • Determine Eigenvalues, Eigenvectors, Diagonalizable From a Partial Information of a MatrixDetermine Eigenvalues, Eigenvectors, Diagonalizable From a Partial Information of a Matrix Suppose the following information is known about a $3\times 3$ matrix $A$. \[A\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}=6\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad A\begin{bmatrix} 1 \\ -1 \\ 1 […]
  • If $A^{\trans}A=A$, then $A$ is a Symmetric Idempotent MatrixIf $A^{\trans}A=A$, then $A$ is a Symmetric Idempotent Matrix Let $A$ be a square matrix such that \[A^{\trans}A=A,\] where $A^{\trans}$ is the transpose matrix of $A$. Prove that $A$ is idempotent, that is, $A^2=A$. Also, prove that $A$ is a symmetric matrix.     Hint. Recall the basic properties of transpose […]
  • Idempotent (Projective) Matrices are DiagonalizableIdempotent (Projective) Matrices are Diagonalizable Let $A$ be an $n\times n$ idempotent complex matrix. Then prove that $A$ is diagonalizable.   Definition. An $n\times n$ matrix $A$ is said to be idempotent if $A^2=A$. It is also called projective matrix. Proof. In general, an $n \times n$ matrix $B$ is […]
  • Unit Vectors and Idempotent MatricesUnit Vectors and Idempotent Matrices A square matrix $A$ is called idempotent if $A^2=A$. (a) Let $\mathbf{u}$ be a vector in $\R^n$ with length $1$. Define the matrix $P$ to be $P=\mathbf{u}\mathbf{u}^{\trans}$. Prove that $P$ is an idempotent matrix. (b) Suppose that $\mathbf{u}$ and $\mathbf{v}$ be […]
  • Idempotent Matrices are DiagonalizableIdempotent Matrices are Diagonalizable Let $A$ be an $n\times n$ idempotent matrix, that is, $A^2=A$. Then prove that $A$ is diagonalizable.   We give three proofs of this problem. The first one proves that $\R^n$ is a direct sum of eigenspaces of $A$, hence $A$ is diagonalizable. The second proof proves […]
  • Matrix Operations with TransposeMatrix Operations with Transpose Calculate the following expressions, using the following matrices: \[A = \begin{bmatrix} 2 & 3 \\ -5 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}, \qquad \mathbf{v} = \begin{bmatrix} 2 \\ -4 \end{bmatrix}\] (a) $A B^\trans + \mathbf{v} […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear Algebra Problems and Solutions
Every Complex Matrix Can Be Written as $A=B+iC$, where $B, C$ are Hermitian Matrices

(a) Prove that each complex $n\times n$ matrix $A$ can be written as \[A=B+iC,\] where $B$ and $C$ are Hermitian...

Close