If a Prime Ideal Contains No Nonzero Zero Divisors, then the Ring is an Integral Domain

Prime Ideal Problems and Solution in Ring Theory in Mathematics

Problem 220

Let $R$ be a commutative ring. Suppose that $P$ is a prime ideal of $R$ containing no nonzero zero divisor. Then show that the ring $R$ is an integral domain.

 
LoadingAdd to solve later

Definitions: zero divisor, integral domain

An element $a$ of a commutative ring $R$ is called a zero divisor if there is $b\neq0$ in $R$ such that $ab=0$.

If a ring $R$ contains no nonzero zero divisors, then we call $R$ an integral domain.

Proof.

Suppose that we have
\[ab=0\] for $a, b \in R$. To show that $R$ has no nonzero zero divisors, we need to prove that $a$ or $b$ is the zero element.
Since $ab=0\in P$ and $P$ is a prime ideal, either $a\in P$ or $b\in P$.
Without loss of generality, we may assume $a\in P$.

If $a=0$, then we are done.
So assume that $a\neq 0$. Then since $P$ does not contain any nonzero zero divisor, we must have $b=0$, otherwise $ab=0, b\neq 0$ means that $a$ is a nonzero zero divisor in $P$.
Therefore, in any case we have either $a=0$ or $b=0$, and thus the ring $R$ contains no nonzero zero divisors. Hence $R$ is an integral domain.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Ring theory
Problems and solutions of ring theory in abstract algebra
How Many Solutions for $x+x=1$ in a Ring?

Is there a (not necessarily commutative) ring $R$ with $1$ such that the equation \[x+x=1 \] has more than one...

Close