If Matrices Commute $AB=BA$, then They Share a Common Eigenvector

Problems and Solutions of Eigenvalue, Eigenvector in Linear Algebra

Problem 608

Let $A$ and $B$ be $n\times n$ matrices and assume that they commute: $AB=BA$.
Then prove that the matrices $A$ and $B$ share at least one common eigenvector.

 
LoadingAdd to solve later

Sponsored Links

Proof.

Let $\lambda$ be an eigenvalue of $A$ and let $\mathbf{x}$ be an eigenvector corresponding to $\lambda$. That is, we have $A\mathbf{x}=\lambda \mathbf{x}$.
Then we claim that the vector $\mathbf{v}:=B\mathbf{x}$ belongs to the eigenspace $E_{\lambda}$ of $\lambda$.
In fact, as $AB=BA$ we have
\begin{align*}
A\mathbf{v}=AB\mathbf{x}=BA\mathbf{x} =\lambda B\mathbf{x}=\lambda \mathbf{v}.
\end{align*}
Hence $\mathbf{v}\in E_{\lambda}$.


Now, let $\{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ be an eigenbasis of the eigenspace $E_{\lambda}$.
Set $\mathbf{v}_i=B\mathbf{x}_i$ for $i=1, \dots, k$.
The above claim yields that $\mathbf{v}_i \in E_{\lambda}$, and hence we can write
\[\mathbf{v}_i=c_{1i} \mathbf{x}_1+c_{2i}\mathbf{x}_2+\cdots+c_{ki}\mathbf{x}_k \tag{*}\] for some scalars $c_{1i}, c_{2i}, \dots, c_{ki}$.


Extend the basis $\{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ of $E_{\lambda}$ to a basis
\[\{\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{x}_{k+1}, \dots, \mathbf{x}_n\}\] of $\R^n$ by adjoining vectors $\mathbf{x}_{k+1}, \dots, \mathbf{x}_n$.


Then we obtain using (*)
\begin{align*}
&B [\mathbf{x}_1,\dots , \mathbf{x}_k, \mathbf{x}_{k+1}, \dots, \mathbf{x}_n]\\
&=[B\mathbf{x}_1,\dots , B\mathbf{x}_k, B\mathbf{x}_{k+1}, \dots, B\mathbf{x}_n]\\
&=[\mathbf{v}_1,\dots , \mathbf{v}_k, B\mathbf{x}_{k+1}, \dots, B\mathbf{x}_n]\\[6pt] &=[\mathbf{x}_1,\dots , \mathbf{x}_k, \mathbf{x}_{k+1}, \dots, \mathbf{x}_n] \left[\begin{array}{c|c}
C & D\\
\hline
O & F
\end{array}
\right],\tag{**}
\end{align*}

where $C=(c_{ij})$ is the $k\times k$ matrix whose entries are the coefficients $c_{ij}$ of the linear combination (*), $O$ is the $(n-k) \times k$ zero matrix, $D$ is a $k \times (n-k)$ matrix, and $F$ is an $(n-k) \times (n-k)$ matrix.


Let $P=[\mathbf{x}_1,\dots , \mathbf{x}_k, \mathbf{x}_{k+1}, \dots, \mathbf{x}_n]$.
As the column vectors of $P$ are linearly independent, $P$ is invertible.

From (**), we obtain
\[P^{-1}BP=\left[\begin{array}{c|c}
C & D\\
\hline
O & F
\end{array}
\right].\] It follows that
\begin{align*}
\det(B-tI)&=\det(P^{-1}BP-tI)=\left|\begin{array}{c|c}
C-tI & D\\
\hline
O & F-tI
\end{array}
\right|=\det(C-tI)\det(F-tI).
\end{align*}


Let $\mu$ be an eigenvalue of the matrix $C$ and let $\mathbf{a}$ be an eigenvector corresponding to $\mu$.
Then as $\det(C-\mu I)=0$, we see that $\det(B-\mu I)=0$ and $\mu$ is an eigenvalue of $B$.

Write
\[\mathbf{a}=\begin{bmatrix}
a_1 \\
a_2 \\
\vdots \\
a_k
\end{bmatrix}\neq \mathbf{0}\] and define a new vector by
\[\mathbf{y}=a_1\mathbf{x}_1+\cdots +a_k \mathbf{x}_k\in E_{\lambda}.\] Then $\mathbf{y}$ is an eigenvector in $E_{\lambda}$ since it is a nonzero (as $\mathbf{a}\neq \mathbf{0}$) linear combination of the basis $E_{\lambda}$.


Multiplying $BP=P\left[\begin{array}{c|c}
C & D\\
\hline
O & F
\end{array}
\right]$ from (**) by the $n$-dimensional vector
\[\begin{bmatrix}
\mathbf{a} \\
0 \\
\vdots\\
0
\end{bmatrix}=\begin{bmatrix}
a_1 \\
\vdots \\
a_k \\
0 \\
\vdots\\
0
\end{bmatrix}\] on the right, we have
\[BP\begin{bmatrix}
\mathbf{a} \\
0 \\
\vdots\\
0
\end{bmatrix}=P\left[\begin{array}{c|c}
C & D\\
\hline
O & F
\end{array}
\right] \begin{bmatrix}
\mathbf{a} \\
0 \\
\vdots\\
0
\end{bmatrix}.\]


The left hand side is equal to
\[B[a_1\mathbf{x}_1+\cdots+a_k \mathbf{x}_k]=B\mathbf{y}.\]

On the other hand, the right hand side is equal to
\begin{align*}
P\begin{bmatrix}
C \mathbf{a}\\
\mathbf{0}
\end{bmatrix}
=P\begin{bmatrix}
\mu \mathbf{a} \\
\mathbf{0}
\end{bmatrix}=\mu P\begin{bmatrix}
\mathbf{a} \\
\mathbf{0}
\end{bmatrix}
=\mu [a_1\mathbf{x}_1+\cdots+a_k \mathbf{x}_k]=\mu \mathbf{y}.
\end{align*}


Therefore, we obtain
\[B\mathbf{y}=\mu \mathbf{y}.\] This proves that the vector $\mathbf{y}$ is eigenvector of both $A$ and $B$.
Hence, this completes the proof.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Ohio State University exam problems and solutions in mathematics
Find a Basis of the Subspace Spanned by Four Polynomials of Degree 3 or Less

Let $\calP_3$ be the vector space of all polynomials of degree $3$ or less. Let \[S=\{p_1(x), p_2(x), p_3(x), p_4(x)\},\] where...

Close