Inner Product, Norm, and Orthogonal Vectors

Ohio State University exam problems and solutions in mathematics

Problem 162

Let $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are vectors in $\R^n$. Suppose that vectors $\mathbf{u}_1$, $\mathbf{u}_2$ are orthogonal and the norm of $\mathbf{u}_2$ is $4$ and $\mathbf{u}_2^{\trans}\mathbf{u}_3=7$. Find the value of the real number $a$ in $\mathbf{u_1}=\mathbf{u_2}+a\mathbf{u}_3$.

(The Ohio State University, Linear Algebra Exam Problem)
 
LoadingAdd to solve later

Sponsored Links


Hint.

Recall the following definitions.

  • The inner product (dot product) of two vectors $\mathbf{v}_1, \mathbf{v}_2$ is defined to be
    \[\mathbf{v}_1\cdot \mathbf{v}_2 :=\mathbf{v}^{\trans}_1\mathbf{v}_2.\]
  • Two vectors $\mathbf{v}_1, \mathbf{v}_2$ are orthogonal if the inner product
    \[\mathbf{v}_1\cdot \mathbf{v}_2=0.\]
  • The norm (length, magnitude) of a vector $\mathbf{v}$ is defined to be
    \[||\mathbf{v}||=\sqrt{\mathbf{v}\cdot \mathbf{v}}.\]

Solution.

We first express the given conditions in term of inner products (dot products).
Since $\mathbf{u}_1$ and $\mathbf{u}_2$ are orthogonal, the inner product
\[\mathbf{u}_2\cdot \mathbf{u}_1=\mathbf{u}_1 \cdot \mathbf{u}_2=0. \tag{a}\]

Also, since the norm of $\mathbf{u}_2$ is $4$, we obtain
\[\mathbf{u}_2\cdot\mathbf{u}_2=||\mathbf{u}_2||^2=16. \tag{b}\] The last condition can be written as
\[\mathbf{u}_2\cdot \mathbf{u}_3=\mathbf{u}_2^{\trans}\mathbf{u}_3=7 \tag{c}.\]

Now we compute the inner product $\mathbf{u}_2$ and $\mathbf{u}_1$.
\begin{align*}
0\stackrel{(a)}{=}&\mathbf{u}_2\cdot \mathbf{u}_1 =\mathbf{u}_2\cdot (\mathbf{u}_2+a\mathbf{u}_3)\\
&=\mathbf{u}_2\cdot \mathbf{u}_2+a\mathbf{u}_2\cdot \mathbf{u}_3\\
&\stackrel{(b), (c)}{=}16+7a.
\end{align*}
Therefore, solving this we obtain
\[a=-\frac{16}{7}.\]


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear Transformation problems and solutions
Give a Formula for a Linear Transformation if the Values on Basis Vectors are Known

Let $T: \R^2 \to \R^2$ be a linear transformation. Let \[ \mathbf{u}=\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \mathbf{v}=\begin{bmatrix} 3 \\ 5...

Close