# Inner Products, Lengths, and Distances of 3-Dimensional Real Vectors

## Problem 687

For this problem, use the real vectors
$\mathbf{v}_1 = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} , \mathbf{v}_2 = \begin{bmatrix} 0 \\ 2 \\ -3 \end{bmatrix} , \mathbf{v}_3 = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} .$ Suppose that $\mathbf{v}_4$ is another vector which is orthogonal to $\mathbf{v}_1$ and $\mathbf{v}_3$, and satisfying
$\mathbf{v}_2 \cdot \mathbf{v}_4 = -3 .$

Calculate the following expressions:

(a) $\mathbf{v}_1 \cdot \mathbf{v}_2$.

(b) $\mathbf{v}_3 \cdot \mathbf{v}_4$.

(c) $( 2 \mathbf{v}_1 + 3 \mathbf{v}_2 – \mathbf{v}_3 ) \cdot \mathbf{v}_4$.

(d) $\| \mathbf{v}_1 \| , \, \| \mathbf{v}_2 \| , \, \| \mathbf{v}_3 \|$.

(e) What is the distance between $\mathbf{v}_1$ and $\mathbf{v}_2$?

## Solution.

### (a) $\mathbf{v}_1 \cdot \mathbf{v}_2$.

$\mathbf{v}_1 \cdot \mathbf{v}_2 = \begin{bmatrix} -1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ -3 \end{bmatrix} = -6 .$

### (b) $\mathbf{v}_3 \cdot \mathbf{v}_4$.

We are given that $\mathbf{v}_3$ and $\mathbf{v}_4$ are orthogonal vectors, thus
$\mathbf{v}_3 \cdot \mathbf{v}_4 = 0 .$

### (c) $( 2 \mathbf{v}_1 + 3 \mathbf{v}_2 – \mathbf{v}_3 ) \cdot \mathbf{v}_4$.

First, distribute the dot product over the sum:
$( 2 \mathbf{v}_1 + 3 \mathbf{v}_2 – \mathbf{v}_3 ) \cdot \mathbf{v}_4 = 2 \mathbf{v}_1 \cdot \mathbf{v}_4 + 3 \mathbf{v}_2 \cdot \mathbf{v}_4 – \mathbf{v}_3 \cdot \mathbf{v}_4 .$

Next we use the given value for $\mathbf{v}_2 \cdot \mathbf{v}_4$, along with the given facts that $\mathbf{v}_4$ is orthogonal to both $\mathbf{v}_1$ and $\mathbf{v}_3$:
\begin{align*}
&2 \mathbf{v}_1 \cdot \mathbf{v}_4 + 3 \mathbf{v}_2 \cdot \mathbf{v}_4 – \mathbf{v}_3 \cdot \mathbf{v}_4 \\
&=2\cdot 0 +3 \cdot (-3)-0 =-9.
\end{align*}

### (d) $\| \mathbf{v}_1 \| , \, \| \mathbf{v}_2 \| , \, \| \mathbf{v}_3 \|$.

The length of a general vector $\mathbf{w}$ is $\|\mathbf{w}\|:=\sqrt{ \mathbf{w}^{\trans} \mathbf{w} }$. Thus,
$\| \mathbf{v}_1 \| \, = \, \sqrt{ (-1)^2+0^2+2^2} \, = \, \sqrt{5} ,$ $\| \mathbf{v}_2 \| \, = \, \sqrt{ 0^2+2^2+(-3)^2} \, = \, \sqrt{13} ,$ $\| \mathbf{v}_3 \| \, = \, \sqrt{ 2^2+2^2+3^2 } \, = \, \sqrt{17} .$

### (e) What is the distance between $\mathbf{v}_1$ and $\mathbf{v}_2$?

The distance between the two vectors is defined to be $\| \mathbf{v}_1 – \mathbf{v}_2 \|$. First we calculate
$\mathbf{v}_1 – \mathbf{v}_2 \, = \, \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} – \begin{bmatrix} 0 \\ 2 \\ -3 \end{bmatrix} \, = \, \begin{bmatrix} -1 \\ -2 \\ 5 \end{bmatrix} .$

Thus,
$\| \mathbf{v}_1 – \mathbf{v}_2 \| = \sqrt{ 1 + 4 + 25 } = \sqrt{30} .$

### More from my site

• Find the Distance Between Two Vectors if the Lengths and the Dot Product are Given Let $\mathbf{a}$ and $\mathbf{b}$ be vectors in $\R^n$ such that their length are $\|\mathbf{a}\|=\|\mathbf{b}\|=1$ and the inner product $\mathbf{a}\cdot \mathbf{b}=\mathbf{a}^{\trans}\mathbf{b}=-\frac{1}{2}.$ Then determine the length $\|\mathbf{a}-\mathbf{b}\|$. (Note […]
• Inner Product, Norm, and Orthogonal Vectors Let $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are vectors in $\R^n$. Suppose that vectors $\mathbf{u}_1$, $\mathbf{u}_2$ are orthogonal and the norm of $\mathbf{u}_2$ is $4$ and $\mathbf{u}_2^{\trans}\mathbf{u}_3=7$. Find the value of the real number $a$ in […]
• Sum of Squares of Hermitian Matrices is Zero, then Hermitian Matrices Are All Zero Let $A_1, A_2, \dots, A_m$ be $n\times n$ Hermitian matrices. Show that if $A_1^2+A_2^2+\cdots+A_m^2=\calO,$ where $\calO$ is the $n \times n$ zero matrix, then we have $A_i=\calO$ for each $i=1,2, \dots, m$.   Hint. Recall that a complex matrix $A$ is Hermitian if […]
• Find the Inverse Matrix of a Matrix With Fractions Find the inverse matrix of the matrix $A=\begin{bmatrix} \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\[6 pt] \frac{6}{7} &\frac{2}{7} &-\frac{3}{7} \\[6pt] -\frac{3}{7} & \frac{6}{7} & -\frac{2}{7} \end{bmatrix}.$   Hint. You may use the augmented matrix […]
• Dot Product, Lengths, and Distances of Complex Vectors For this problem, use the complex vectors $\mathbf{w}_1 = \begin{bmatrix} 1 + i \\ 1 - i \\ 0 \end{bmatrix} , \, \mathbf{w}_2 = \begin{bmatrix} -i \\ 0 \\ 2 - i \end{bmatrix} , \, \mathbf{w}_3 = \begin{bmatrix} 2+i \\ 1 - 3i \\ 2i \end{bmatrix} .$ Suppose $\mathbf{w}_4$ is […]
• Eigenvalues of a Hermitian Matrix are Real Numbers Show that eigenvalues of a Hermitian matrix $A$ are real numbers. (The Ohio State University Linear Algebra Exam Problem)   We give two proofs. These two proofs are essentially the same. The second proof is a bit simpler and concise compared to the first one. […]
• Unit Vectors and Idempotent Matrices A square matrix $A$ is called idempotent if $A^2=A$. (a) Let $\mathbf{u}$ be a vector in $\R^n$ with length $1$. Define the matrix $P$ to be $P=\mathbf{u}\mathbf{u}^{\trans}$. Prove that $P$ is an idempotent matrix. (b) Suppose that $\mathbf{u}$ and $\mathbf{v}$ be […]
• Prove the Cauchy-Schwarz Inequality Let $\mathbf{a}, \mathbf{b}$ be vectors in $\R^n$. Prove the Cauchy-Schwarz inequality: $|\mathbf{a}\cdot \mathbf{b}|\leq \|\mathbf{a}\|\,\|\mathbf{b}\|.$   We give two proofs. Proof 1 Let $x$ be a variable and consider the length of the vector […]

#### You may also like...

This site uses Akismet to reduce spam. Learn how your comment data is processed.

##### Given the Data of Eigenvalues, Determine if the Matrix is Invertible

In each of the following cases, can we conclude that $A$ is invertible? If so, find an expression for $A^{-1}$...

Close