Event_f_definition

LoadingAdd to solve later

Sponsored Links

definition of the set F_n


LoadingAdd to solve later

Sponsored Links

More from my site

  • A Group Homomorphism and an Abelian GroupA Group Homomorphism and an Abelian Group Let $G$ be a group. Define a map $f:G \to G$ by sending each element $g \in G$ to its inverse $g^{-1} \in G$. Show that $G$ is an abelian group if and only if the map $f: G\to G$ is a group homomorphism.   Proof. $(\implies)$ If $G$ is an abelian group, then $f$ […]
  • Linear Properties of Matrix Multiplication and the Null Space of a MatrixLinear Properties of Matrix Multiplication and the Null Space of a Matrix Let $A$ be an $m \times n$ matrix. Let $\calN(A)$ be the null space of $A$. Suppose that $\mathbf{u} \in \calN(A)$ and $\mathbf{v} \in \calN(A)$. Let $\mathbf{w}=3\mathbf{u}-5\mathbf{v}$. Then find $A\mathbf{w}$.   Hint. Recall that the null space of an […]
  • Subspace of Skew-Symmetric Matrices and Its DimensionSubspace of Skew-Symmetric Matrices and Its Dimension Let $V$ be the vector space of all $2\times 2$ matrices. Let $W$ be a subset of $V$ consisting of all $2\times 2$ skew-symmetric matrices. (Recall that a matrix $A$ is skew-symmetric if $A^{\trans}=-A$.) (a) Prove that the subset $W$ is a subspace of $V$. (b) Find the […]
  • How to Obtain Information of a Vector if Information of Other Vectors are GivenHow to Obtain Information of a Vector if Information of Other Vectors are Given Let $A$ be a $3\times 3$ matrix and let \[\mathbf{v}=\begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \text{ and } \mathbf{w}=\begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}.\] Suppose that $A\mathbf{v}=-\mathbf{v}$ and $A\mathbf{w}=2\mathbf{w}$. Then find […]
  • The Matrix Representation of the Linear Transformation $T (f) (x) = ( x^2 – 2) f(x)$The Matrix Representation of the Linear Transformation $T (f) (x) = ( x^2 – 2) f(x)$ Let $\mathrm{P}_n$ be the vector space of polynomials of degree at most $n$. The set $B = \{ 1 , x , x^2 , \cdots , x^n \}$ is a basis of $\mathrm{P}_n$, called the standard basis. Let $T : \mathrm{P}_3 \rightarrow \mathrm{P}_{5}$ be the map defined by, for $f \in […]
  • Equivalent Conditions to be a Unitary MatrixEquivalent Conditions to be a Unitary Matrix A complex matrix is called unitary if $\overline{A}^{\trans} A=I$. The inner product $(\mathbf{x}, \mathbf{y})$ of complex vector $\mathbf{x}$, $\mathbf{y}$ is defined by $(\mathbf{x}, \mathbf{y}):=\overline{\mathbf{x}}^{\trans} \mathbf{y}$. The length of a complex vector […]
  • Nilpotent Element a in a Ring and Unit Element $1-ab$Nilpotent Element a in a Ring and Unit Element $1-ab$ Let $R$ be a commutative ring with $1 \neq 0$. An element $a\in R$ is called nilpotent if $a^n=0$ for some positive integer $n$. Then prove that if $a$ is a nilpotent element of $R$, then $1-ab$ is a unit for all $b \in R$.   We give two proofs. Proof 1. Since $a$ […]
  • Diagonalize the $2\times 2$ Hermitian Matrix by a Unitary MatrixDiagonalize the $2\times 2$ Hermitian Matrix by a Unitary Matrix Consider the Hermitian matrix \[A=\begin{bmatrix} 1 & i\\ -i& 1 \end{bmatrix}.\] (a) Find the eigenvalues of $A$. (b) For each eigenvalue of $A$, find the eigenvectors. (c) Diagonalize the Hermitian matrix $A$ by a unitary matrix. Namely, find a diagonal matrix […]

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.