The mathematical properties of 2017

LoadingAdd to solve later

The mathematical properties of 2017


LoadingAdd to solve later

More from my site

  • Welcome to Problems in MathematicsWelcome to Problems in Mathematics Welcome to my website. I post problems and its solutions/proofs in mathematics almost every day. Most of the problems are undergraduate level mathematics. Here are several topics I cover on this website. Topics Linear Algebra Group Theory Ring Theory Field Theory, Galois […]
  • Mathematics About the Number 2018Mathematics About the Number 2018 Happy New Year 2018!! Here are several mathematical facts about the number 2018.   Is 2018 a Prime Number? The number 2018 is an even number, so in particular 2018 is not a prime number. The prime factorization of 2018 is \[2018=2\cdot 1009.\] Here $2$ and $1009$ are […]
  • Mathematics About the Number 2017Mathematics About the Number 2017 Happy New Year 2017!! Here is the list of mathematical facts about the number 2017 that you can brag about to your friends or family as a math geek. 2017 is a prime number Of course, I start with the fact that the number 2017 is a prime number. The previous prime year was […]
  • Compute the Product  $A^{2017}\mathbf{u}$ of a Matrix Power and a VectorCompute the Product $A^{2017}\mathbf{u}$ of a Matrix Power and a Vector Let \[A=\begin{bmatrix} -1 & 2 \\ 0 & -1 \end{bmatrix} \text{ and } \mathbf{u}=\begin{bmatrix} 1\\ 0 \end{bmatrix}.\] Compute $A^{2017}\mathbf{u}$.   (The Ohio State University, Linear Algebra Exam) Solution. We first compute $A\mathbf{u}$. We […]
  • Companion Matrix for a PolynomialCompanion Matrix for a Polynomial Consider a polynomial \[p(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0,\] where $a_i$ are real numbers. Define the matrix \[A=\begin{bmatrix} 0 & 0 & \dots & 0 &-a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \dots & 0 & -a_2 \\ \vdots & […]
  • Nilpotent Matrix and Eigenvalues of the MatrixNilpotent Matrix and Eigenvalues of the Matrix An $n\times n$ matrix $A$ is called nilpotent if $A^k=O$, where $O$ is the $n\times n$ zero matrix. Prove the followings. (a) The matrix $A$ is nilpotent if and only if all the eigenvalues of $A$ is zero. (b) The matrix $A$ is nilpotent if and only if […]
  • Powers of a Diagonal MatrixPowers of a Diagonal Matrix Let $A=\begin{bmatrix} a & 0\\ 0& b \end{bmatrix}$. Show that (1) $A^n=\begin{bmatrix} a^n & 0\\ 0& b^n \end{bmatrix}$ for any $n \in \N$. (2) Let $B=S^{-1}AS$, where $S$ be an invertible $2 \times 2$ matrix. Show that $B^n=S^{-1}A^n S$ for any $n \in […]
  • Taking the Third Order Taylor Polynomial is a Linear TransformationTaking the Third Order Taylor Polynomial is a Linear Transformation The space $C^{\infty} (\mathbb{R})$ is the vector space of real functions which are infinitely differentiable. Let $T : C^{\infty} (\mathbb{R}) \rightarrow \mathrm{P}_3$ be the map which takes $f \in C^{\infty}(\mathbb{R})$ to its third order Taylor polynomial, specifically defined […]

Leave a Reply

Your email address will not be published. Required fields are marked *