# triangle2018

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Given Graphs of Characteristic Polynomial of Diagonalizable Matrices, Determine the Rank of Matrices Let $A, B, C$ are $2\times 2$ diagonalizable matrices. The graphs of characteristic polynomials of $A, B, C$ are shown below. The red graph is for $A$, the blue one for $B$, and the green one for $C$. From this information, determine the rank of the matrices $A, B,$ and […]
- Eigenvalues of a Stochastic Matrix is Always Less than or Equal to 1 Let $A=(a_{ij})$ be an $n \times n$ matrix. We say that $A=(a_{ij})$ is a right stochastic matrix if each entry $a_{ij}$ is nonnegative and the sum of the entries of each row is $1$. That is, we have \[a_{ij}\geq 0 \quad \text{ and } \quad a_{i1}+a_{i2}+\cdots+a_{in}=1\] for $1 […]
- Express a Hermitian Matrix as a Sum of Real Symmetric Matrix and a Real Skew-Symmetric Matrix Recall that a complex matrix is called Hermitian if $A^*=A$, where $A^*=\bar{A}^{\trans}$. Prove that every Hermitian matrix $A$ can be written as the sum \[A=B+iC,\] where $B$ is a real symmetric matrix and $C$ is a real skew-symmetric matrix. Proof. Since […]
- Properties of Nonsingular and Singular Matrices An $n \times n$ matrix $A$ is called nonsingular if the only solution of the equation $A \mathbf{x}=\mathbf{0}$ is the zero vector $\mathbf{x}=\mathbf{0}$. Otherwise $A$ is called singular. (a) Show that if $A$ and $B$ are $n\times n$ nonsingular matrices, then the product $AB$ is […]
- A Square Root Matrix of a Symmetric Matrix with Non-Negative Eigenvalues Let $A$ be an $n\times n$ real symmetric matrix whose eigenvalues are all non-negative real numbers. Show that there is an $n \times n$ real matrix $B$ such that $B^2=A$. Hint. Use the fact that a real symmetric matrix is diagonalizable by a real orthogonal matrix. […]
- Solving a System of Differential Equation by Finding Eigenvalues and Eigenvectors Consider the system of differential equations \begin{align*} \frac{\mathrm{d} x_1(t)}{\mathrm{d}t} & = 2 x_1(t) -x_2(t) -x_3(t)\\ \frac{\mathrm{d}x_2(t)}{\mathrm{d}t} & = -x_1(t)+2x_2(t) -x_3(t)\\ \frac{\mathrm{d}x_3(t)}{\mathrm{d}t} & = -x_1(t) -x_2(t) […]
- Matrix Representation of a Linear Transformation of the Vector Space $R^2$ to $R^2$ Let $B=\{\mathbf{v}_1, \mathbf{v}_2 \}$ be a basis for the vector space $\R^2$, and let $T:\R^2 \to \R^2$ be a linear transformation such that \[T(\mathbf{v}_1)=\begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ and } T(\mathbf{v}_2)=\begin{bmatrix} 3 \\ 1 […]
- Example of Two Groups and a Subgroup of the Direct Product that is Not of the Form of Direct Product Give an example of two groups $G$ and $H$ and a subgroup $K$ of the direct product $G\times H$ such that $K$ cannot be written as $K=G_1\times H_1$, where $G_1$ and $H_1$ are subgroups of $G$ and $H$, respectively. Solution. Let $G$ be any nontrivial group, and let […]