Nilpotent Element a in a Ring and Unit Element $1-ab$

Problems and solutions of ring theory in abstract algebra

Problem 171

Let $R$ be a commutative ring with $1 \neq 0$.
An element $a\in R$ is called nilpotent if $a^n=0$ for some positive integer $n$.

Then prove that if $a$ is a nilpotent element of $R$, then $1-ab$ is a unit for all $b \in R$.
 
LoadingAdd to solve later

Sponsored Links


We give two proofs.

Proof 1.

Since $a$ is nilpotent, we have $a^n=0$ for some positive integer $n$.
Then for any $b \in R$, we have $(ab)^n=a^nb^n=0$ since $R$ is commutative.

Then we have the following equality:
\[(1-ab)(1+(ab)+(ab)^2+\cdots+(ab)^{n-1})=1.\] Therefore $1-ab$ is a unit in $R$.

Proof 2.

There exists $n \in \N$ such that $a^n=0$ since $a$ is nilpotent.
Assume that $1-ab$ is not a unit for some $b \in R$.
Then there exists a prime ideal $\frakp$ of $R$ such that $\frakp \ni 1-ab$.

Since $a^n=0\in \frakp$, we have $a\in \frakp$ since $\frakp$ is an prime ideal.
Then $ab \in \frakp$ and we have
\[1=(1-ab)+ab \in \frakp.\]

However, this implies that $\frakp=R$ and this is a contradiction. Thus $1-ab$ is a unit of the ring $R$ for all $b \in R$.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Is the Set of Nilpotent Element an Ideal?Is the Set of Nilpotent Element an Ideal? Is it true that a set of nilpotent elements in a ring $R$ is an ideal of $R$? If so, prove it. Otherwise give a counterexample.   Proof. We give a counterexample. Let $R$ be the noncommutative ring of $2\times 2$ matrices with real […]
  • Boolean Rings Do Not Have Nonzero Nilpotent ElementsBoolean Rings Do Not Have Nonzero Nilpotent Elements Let $R$ be a commutative ring with $1$ such that every element $x$ in $R$ is idempotent, that is, $x^2=x$. (Such a ring is called a Boolean ring.) (a) Prove that $x^n=x$ for any positive integer $n$. (b) Prove that $R$ does not have a nonzero nilpotent […]
  • Equivalent Conditions For a Prime Ideal in a Commutative RingEquivalent Conditions For a Prime Ideal in a Commutative Ring Let $R$ be a commutative ring and let $P$ be an ideal of $R$. Prove that the following statements are equivalent: (a) The ideal $P$ is a prime ideal. (b) For any two ideals $I$ and $J$, if $IJ \subset P$ then we have either $I \subset P$ or $J \subset P$.   Proof. […]
  • Prime Ideal is Irreducible in a Commutative RingPrime Ideal is Irreducible in a Commutative Ring Let $R$ be a commutative ring. An ideal $I$ of $R$ is said to be irreducible if it cannot be written as an intersection of two ideals of $R$ which are strictly larger than $I$. Prove that if $\frakp$ is a prime ideal of the commutative ring $R$, then $\frakp$ is […]
  • If Every Proper Ideal of a Commutative Ring is a Prime Ideal, then It is a Field.If Every Proper Ideal of a Commutative Ring is a Prime Ideal, then It is a Field. Let $R$ be a commutative ring with $1$. Prove that if every proper ideal of $R$ is a prime ideal, then $R$ is a field.   Proof. As the zero ideal $(0)$ of $R$ is a proper ideal, it is a prime ideal by assumption. Hence $R=R/\{0\}$ is an integral […]
  • A Prime Ideal in the Ring $\Z[\sqrt{10}]$A Prime Ideal in the Ring $\Z[\sqrt{10}]$ Consider the ring \[\Z[\sqrt{10}]=\{a+b\sqrt{10} \mid a, b \in \Z\}\] and its ideal \[P=(2, \sqrt{10})=\{a+b\sqrt{10} \mid a, b \in \Z, 2|a\}.\] Show that $p$ is a prime ideal of the ring $\Z[\sqrt{10}]$.   Definition of a prime ideal. An ideal $P$ of a ring $R$ is […]
  • The Ideal $(x)$ is Prime in the Polynomial Ring $R[x]$ if and only if the Ring $R$ is an Integral DomainThe Ideal $(x)$ is Prime in the Polynomial Ring $R[x]$ if and only if the Ring $R$ is an Integral Domain Let $R$ be a commutative ring with $1$. Prove that the principal ideal $(x)$ generated by the element $x$ in the polynomial ring $R[x]$ is a prime ideal if and only if $R$ is an integral domain. Prove also that the ideal $(x)$ is a maximal ideal if and only if $R$ is a […]
  • In a Principal Ideal Domain (PID), a Prime Ideal is a Maximal IdealIn a Principal Ideal Domain (PID), a Prime Ideal is a Maximal Ideal Let $R$ be a principal ideal domain (PID) and let $P$ be a nonzero prime ideal in $R$. Show that $P$ is a maximal ideal in $R$.   Definition A commutative ring $R$ is a principal ideal domain (PID) if $R$ is a domain and any ideal $I$ is generated by a single element […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Ring theory
Problems and solutions of ring theory in abstract algebra
Rings $2\Z$ and $3\Z$ are Not Isomorphic

Prove that the rings $2\Z$ and $3\Z$ are not isomorphic.  

Close