# nilpotent-matrix

by Yu ·

Add to solve later

Add to solve later

Add to solve later

### More from my site

- If Two Matrices Have the Same Eigenvalues with Linearly Independent Eigenvectors, then They Are Equal Let $A$ and $B$ be $n\times n$ matrices. Suppose that $A$ and $B$ have the same eigenvalues $\lambda_1, \dots, \lambda_n$ with the same corresponding eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_n$. Prove that if the eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_n$ are linearly […]
- The Rank and Nullity of a Linear Transformation from Vector Spaces of Matrices to Polynomials Let $V$ be the vector space of $2 \times 2$ matrices with real entries, and $\mathrm{P}_3$ the vector space of real polynomials of degree 3 or less. Define the linear transformation $T : V \rightarrow \mathrm{P}_3$ by \[T \left( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = […]
- Isomorphism Criterion of Semidirect Product of Groups Let $A$, $B$ be groups. Let $\phi:B \to \Aut(A)$ be a group homomorphism. The semidirect product $A \rtimes_{\phi} B$ with respect to $\phi$ is a group whose underlying set is $A \times B$ with group operation \[(a_1, b_1)\cdot (a_2, b_2)=(a_1\phi(b_1)(a_2), b_1b_2),\] where $a_i […]
- Example of a Nilpotent Matrix $A$ such that $A^2\neq O$ but $A^3=O$. Find a nonzero $3\times 3$ matrix $A$ such that $A^2\neq O$ and $A^3=O$, where $O$ is the $3\times 3$ zero matrix. (Such a matrix is an example of a nilpotent matrix. See the comment after the solution.) Solution. For example, let $A$ be the following $3\times […]
- Subset of Vectors Perpendicular to Two Vectors is a Subspace Let $\mathbf{a}$ and $\mathbf{b}$ be fixed vectors in $\R^3$, and let $W$ be the subset of $\R^3$ defined by \[W=\{\mathbf{x}\in \R^3 \mid \mathbf{a}^{\trans} \mathbf{x}=0 \text{ and } \mathbf{b}^{\trans} \mathbf{x}=0\}.\] Prove that the subset $W$ is a subspace of […]
- A Group with a Prime Power Order Elements Has Order a Power of the Prime. Let $p$ be a prime number. Suppose that the order of each element of a finite group $G$ is a power of $p$. Then prove that $G$ is a $p$-group. Namely, the order of $G$ is a power of $p$. Hint. You may use Sylow's theorem. For a review of Sylow's theorem, please check out […]
- The Polynomial $x^p-2$ is Irreducible Over the Cyclotomic Field of $p$-th Root of Unity Prove that the polynomial $x^p-2$ for a prime number $p$ is irreducible over the field $\Q(\zeta_p)$, where $\zeta_p$ is a primitive $p$th root of unity. Hint. Consider the field extension $\Q(\sqrt[p]{2}, \zeta)$, where $\zeta$ is a primitive $p$-th root of […]
- An Example of a Real Matrix that Does Not Have Real Eigenvalues Let \[A=\begin{bmatrix} a & b\\ -b& a \end{bmatrix}\] be a $2\times 2$ matrix, where $a, b$ are real numbers. Suppose that $b\neq 0$. Prove that the matrix $A$ does not have real eigenvalues. Proof. Let $\lambda$ be an arbitrary eigenvalue of […]