# squareroot-of-matrix

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Dihedral Group and Rotation of the Plane Let $n$ be a positive integer. Let $D_{2n}$ be the dihedral group of order $2n$. Using the generators and the relations, the dihedral group $D_{2n}$ is given by \[D_{2n}=\langle r,s \mid r^n=s^2=1, sr=r^{-1}s\rangle.\] Put $\theta=2 \pi/n$. (a) Prove that the matrix […]
- For What Values of $a$, Is the Matrix Nonsingular? Determine the values of a real number $a$ such that the matrix \[A=\begin{bmatrix} 3 & 0 & a \\ 2 &3 &0 \\ 0 & 18a & a+1 \end{bmatrix}\] is nonsingular. Solution. We apply elementary row operations and obtain: \begin{align*} A=\begin{bmatrix} 3 & 0 & a […]
- If Vectors are Linearly Dependent, then What Happens When We Add One More Vectors? Suppose that $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ are linearly dependent $n$-dimensional real vectors. For any vector $\mathbf{v}_{r+1} \in \R^n$, determine whether the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r, \mathbf{v}_{r+1}$ are linearly […]
- Example of an Infinite Group Whose Elements Have Finite Orders Is it possible that each element of an infinite group has a finite order? If so, give an example. Otherwise, prove the non-existence of such a group. Solution. We give an example of a group of infinite order each of whose elements has a finite order. Consider […]
- Quiz 13 (Part 2) Find Eigenvalues and Eigenvectors of a Special Matrix Find all eigenvalues of the matrix \[A=\begin{bmatrix} 0 & i & i & i \\ i &0 & i & i \\ i & i & 0 & i \\ i & i & i & 0 \end{bmatrix},\] where $i=\sqrt{-1}$. For each eigenvalue of $A$, determine its algebraic multiplicity and geometric […]
- Determine Eigenvalues, Eigenvectors, Diagonalizable From a Partial Information of a Matrix Suppose the following information is known about a $3\times 3$ matrix $A$. \[A\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}=6\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad A\begin{bmatrix} 1 \\ -1 \\ 1 […]
- A Condition that a Vector is a Linear Combination of Columns Vectors of a Matrix Suppose that an $n \times m$ matrix $M$ is composed of the column vectors $\mathbf{b}_1 , \cdots , \mathbf{b}_m$. Prove that a vector $\mathbf{v} \in \R^n$ can be written as a linear combination of the column vectors if and only if there is a vector $\mathbf{x}$ which solves the […]
- Quiz 12. Find Eigenvalues and their Algebraic and Geometric Multiplicities (a) Let \[A=\begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 &1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}.\] Find the eigenvalues of the matrix $A$. Also give the algebraic multiplicity of each eigenvalue. (b) Let \[A=\begin{bmatrix} 0 & 0 & 0 & 0 […]