# squareroot-of-matrix

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Determine Trigonometric Functions with Given Conditions (a) Find a function \[g(\theta) = a \cos(\theta) + b \cos(2 \theta) + c \cos(3 \theta)\] such that $g(0) = g(\pi/2) = g(\pi) = 0$, where $a, b, c$ are constants. (b) Find real numbers $a, b, c$ such that the function \[g(\theta) = a \cos(\theta) + b \cos(2 \theta) + c \cos(3 […]
- Quiz 3. Condition that Vectors are Linearly Dependent/ Orthogonal Vectors are Linearly Independent (a) For what value(s) of $a$ is the following set $S$ linearly dependent? \[ S=\left \{\,\begin{bmatrix} 1 \\ 2 \\ 3 \\ a \end{bmatrix}, \begin{bmatrix} a \\ 0 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ a^2 […]
- Prove that the Center of Matrices is a Subspace Let $V$ be the vector space of $n \times n$ matrices with real coefficients, and define \[ W = \{ \mathbf{v} \in V \mid \mathbf{v} \mathbf{w} = \mathbf{w} \mathbf{v} \mbox{ for all } \mathbf{w} \in V \}.\] The set $W$ is called the center of $V$. Prove that $W$ is a subspace […]
- Is an Eigenvector of a Matrix an Eigenvector of its Inverse? Suppose that $A$ is an $n \times n$ matrix with eigenvalue $\lambda$ and corresponding eigenvector $\mathbf{v}$. (a) If $A$ is invertible, is $\mathbf{v}$ an eigenvector of $A^{-1}$? If so, what is the corresponding eigenvalue? If not, explain why not. (b) Is $3\mathbf{v}$ an […]
- The Inverse Matrix of a Symmetric Matrix whose Diagonal Entries are All Positive Let $A$ be a real symmetric matrix whose diagonal entries are all positive real numbers. Is it true that the all of the diagonal entries of the inverse matrix $A^{-1}$ are also positive? If so, prove it. Otherwise, give a counterexample. Solution. The […]
- Find All Values of $a$ which Will Guarantee that $A$ Has Eigenvalues 0, 3, and -3. Let $A$ be the matrix given by \[ A= \begin{bmatrix} -2 & 0 & 1 \\ -5 & 3 & a \\ 4 & -2 & -1 \end{bmatrix} \] for some variable $a$. Find all values of $a$ which will guarantee that $A$ has eigenvalues $0$, $3$, and $-3$. Solution. Let $p(t)$ be the […]
- Prove that a Group of Order 217 is Cyclic and Find the Number of Generators Let $G$ be a finite group of order $217$. (a) Prove that $G$ is a cyclic group. (b) Determine the number of generators of the group $G$. Sylow's Theorem We will use Sylow's theorem to prove part (a). For a review of Sylow's theorem, check out the […]
- Prove the Cauchy-Schwarz Inequality Let $\mathbf{a}, \mathbf{b}$ be vectors in $\R^n$. Prove the Cauchy-Schwarz inequality: \[|\mathbf{a}\cdot \mathbf{b}|\leq \|\mathbf{a}\|\,\|\mathbf{b}\|.\] We give two proofs. Proof 1 Let $x$ be a variable and consider the length of the vector […]