# squareroot-of-matrix

• Group of Order $pq$ Has a Normal Sylow Subgroup and Solvable Let $p, q$ be prime numbers such that $p>q$. If a group $G$ has order $pq$, then show the followings. (a) The group $G$ has a normal Sylow $p$-subgroup. (b) The group $G$ is solvable.   Definition/Hint For (a), apply Sylow's theorem. To review Sylow's theorem, […]
• The Polynomial $x^p-2$ is Irreducible Over the Cyclotomic Field of $p$-th Root of Unity Prove that the polynomial $x^p-2$ for a prime number $p$ is irreducible over the field $\Q(\zeta_p)$, where $\zeta_p$ is a primitive $p$th root of unity.   Hint. Consider the field extension $\Q(\sqrt[p]{2}, \zeta)$, where $\zeta$ is a primitive $p$-th root of […]
• Complex Conjugates of Eigenvalues of a Real Matrix are Eigenvalues Let $A$ be an $n\times n$ real matrix. Prove that if $\lambda$ is an eigenvalue of $A$, then its complex conjugate $\bar{\lambda}$ is also an eigenvalue of $A$.   We give two proofs. Proof 1. Let $\mathbf{x}$ be an eigenvector corresponding to the […]
• Find Inverse Matrices Using Adjoint Matrices Let $A$ be an $n\times n$ matrix. The $(i, j)$ cofactor $C_{ij}$ of $A$ is defined to be $C_{ij}=(-1)^{ij}\det(M_{ij}),$ where $M_{ij}$ is the $(i,j)$ minor matrix obtained from $A$ removing the $i$-th row and $j$-th column. Then consider the $n\times n$ matrix […]
• Ideal Quotient (Colon Ideal) is an Ideal Let $R$ be a commutative ring. Let $S$ be a subset of $R$ and let $I$ be an ideal of $I$. We define the subset $(I:S):=\{ a \in R \mid aS\subset I\}.$ Prove that $(I:S)$ is an ideal of $R$. This ideal is called the ideal quotient, or colon ideal.   Proof. Let $a, […] • The Rotation Matrix is an Orthogonal Transformation Let$\mathbb{R}^2$be the vector space of size-2 column vectors. This vector space has an inner product defined by$ \langle \mathbf{v} , \mathbf{w} \rangle = \mathbf{v}^\trans \mathbf{w}$. A linear transformation$T : \R^2 \rightarrow \R^2$is called an orthogonal transformation if […] • Quiz 2. The Vector Form For the General Solution / Transpose Matrices. Math 2568 Spring 2017. (a) The given matrix is the augmented matrix for a system of linear equations. Give the vector form for the general solution. $\left[\begin{array}{rrrrr|r} 1 & 0 & -1 & 0 &-2 & 0 \\ 0 & 1 & 2 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ \end{array} \right].$ […] • Quiz 12. Find Eigenvalues and their Algebraic and Geometric Multiplicities (a) Let $A=\begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 &1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}.$ Find the eigenvalues of the matrix$A\$. Also give the algebraic multiplicity of each eigenvalue. (b) Let \[A=\begin{bmatrix} 0 & 0 & 0 & 0 […]