Normal Subgroups Intersecting Trivially Commute in a Group

Normal Subgroups Problems and Solutions in Group Theory

Problem 49

Let $A$ and $B$ be normal subgroups of a group $G$. Suppose $A\cap B=\{e\}$, where $e$ is the unit element of the group $G$.
Show that for any $a \in A$ and $b \in B$ we have $ab=ba$.

LoadingAdd to solve later

Sponsored Links


Hint.

Consider the commutator of $a$ and $b$, that is, $aba^{-1}b^{-1}$.

Solution.

Consider the product $aba^{-1}b^{-1}$. Since $A$ is normal in $G$, the element $ba^{-1}b^{-1} \in A$ as it is the conjugate of $a^{-1}\in A$.
Thus $aba^{-1}b^{-1}=a(ba^{-1}b^{-1} ) \in A$.

Similarly, since $B$ is normal in $G$, we have $aba^{-1} \in B$.

Hence $aba^{-1}b^{-1}=(aba^{-1})b^{-1} \in B$.
Therefore $aba^{-1}b^{-1} \in A\cap B=\{e\}$ and we see that $aba^{-1}b^{-1}=e$, thus $ab=ba$.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Commutator Subgroup and Abelian Quotient GroupCommutator Subgroup and Abelian Quotient Group Let $G$ be a group and let $D(G)=[G,G]$ be the commutator subgroup of $G$. Let $N$ be a subgroup of $G$. Prove that the subgroup $N$ is normal in $G$ and $G/N$ is an abelian group if and only if $N \supset D(G)$.   Definitions. Recall that for any $a, b \in G$, the […]
  • Non-Abelian Simple Group is Equal to its Commutator SubgroupNon-Abelian Simple Group is Equal to its Commutator Subgroup Let $G$ be a non-abelian simple group. Let $D(G)=[G,G]$ be the commutator subgroup of $G$. Show that $G=D(G)$.   Definitions/Hint. We first recall relevant definitions. A group is called simple if its normal subgroups are either the trivial subgroup or the group […]
  • Two Quotients Groups are Abelian then Intersection Quotient is AbelianTwo Quotients Groups are Abelian then Intersection Quotient is Abelian Let $K, N$ be normal subgroups of a group $G$. Suppose that the quotient groups $G/K$ and $G/N$ are both abelian groups. Then show that the group \[G/(K \cap N)\] is also an abelian group.   Hint. We use the following fact to prove the problem. Lemma: For a […]
  • Group Generated by Commutators of Two Normal Subgroups is a Normal SubgroupGroup Generated by Commutators of Two Normal Subgroups is a Normal Subgroup Let $G$ be a group and $H$ and $K$ be subgroups of $G$. For $h \in H$, and $k \in K$, we define the commutator $[h, k]:=hkh^{-1}k^{-1}$. Let $[H,K]$ be a subgroup of $G$ generated by all such commutators. Show that if $H$ and $K$ are normal subgroups of $G$, then the subgroup […]
  • Prove a Group is Abelian if $(ab)^3=a^3b^3$ and No Elements of Order $3$Prove a Group is Abelian if $(ab)^3=a^3b^3$ and No Elements of Order $3$ Let $G$ be a group. Suppose that we have \[(ab)^3=a^3b^3\] for any elements $a, b$ in $G$. Also suppose that $G$ has no elements of order $3$. Then prove that $G$ is an abelian group.   Proof. Let $a, b$ be arbitrary elements of the group $G$. We want […]
  • A Condition that a Commutator Group is a Normal SubgroupA Condition that a Commutator Group is a Normal Subgroup Let $H$ be a normal subgroup of a group $G$. Then show that $N:=[H, G]$ is a subgroup of $H$ and $N \triangleleft G$. Here $[H, G]$ is a subgroup of $G$ generated by commutators $[h,k]:=hkh^{-1}k^{-1}$. In particular, the commutator subgroup $[G, G]$ is a normal subgroup of […]
  • Two Normal Subgroups Intersecting Trivially Commute Each OtherTwo Normal Subgroups Intersecting Trivially Commute Each Other Let $G$ be a group. Assume that $H$ and $K$ are both normal subgroups of $G$ and $H \cap K=1$. Then for any elements $h \in H$ and $k\in K$, show that $hk=kh$.   Proof. It suffices to show that $h^{-1}k^{-1}hk \in H \cap K$. In fact, if this it true then we have […]
  • Abelian Normal Subgroup, Intersection, and Product of GroupsAbelian Normal Subgroup, Intersection, and Product of Groups Let $G$ be a group and let $A$ be an abelian subgroup of $G$ with $A \triangleleft G$. (That is, $A$ is a normal subgroup of $G$.) If $B$ is any subgroup of $G$, then show that \[A \cap B \triangleleft AB.\]   Proof. First of all, since $A \triangleleft G$, the […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Group Theory
Group Theory Problems and Solutions
The Center of the Symmetric group is Trivial if $n>2$

Show that the center $Z(S_n)$ of the symmetric group with $n \geq 3$ is trivial.

Close