Overall Fraction of Defective Smartphones of Three Factories

Probability problems

Problem 735

A certain model of smartphone is manufactured by three factories A, B, and C. Factories A, B, and C produce $60\%$, $25\%$, and $15\%$ of the smartphones, respectively.

Suppose that their defective rates are $5\%$, $2\%$, and $7\%$, respectively. Determine the overall fraction of defective smartphones of this model.

LoadingAdd to solve later

Solution.

Let $E$ be the event that a smartphone of this model is defective. Let $F_A$ be the event that a smartphone is manufactured by factory A. Similarly for $F_B$ and $F_C$.

Then the overall fraction of defective smartphones of this model can be found as follows.
\begin{align*}
P(E) &= P(F_A \cap E) + P(F_B \cap E) + P(F_C \cap E)\\
&= P(F_A)\cdot P(E \mid F_A) + P(F_B)\cdot P(E \mid F_B) + P(F_C)\cdot P(E \mid F_C)\\
&= (0.6)(0.05) + (0.25)(0.02) + (0.15)(0.07)\\
&= 0.0455.
\end{align*}
Thus, the overall defective rate is $4.55\%$.

Further Question

In the context of the above problem, if a smartphone of this model is found out to be detective, find the probability that this smartphone was manufactured in factory C.

The solution is available in the post If a Smartphone is Defective, Which Factory Made It?


LoadingAdd to solve later

Sponsored Links

More from my site

  • If a Smartphone is Defective, Which Factory Made It?If a Smartphone is Defective, Which Factory Made It? A certain model of smartphone is manufactured by three factories A, B, and C. Factories A, B, and C produce $60\%$, $25\%$, and $15\%$ of the smartphones, respectively. Suppose that their defective rates are $5\%$, $2\%$, and $7\%$, respectively. If a smartphone of this model is […]
  • Conditional Probability Problems about Die RollingConditional Probability Problems about Die Rolling A fair six-sided die is rolled. (1) What is the conditional probability that the die lands on a prime number given the die lands on an odd number? (2) What is the conditional probability that the die lands on 1 given the die lands on a prime number? Solution. Let $E$ […]
  • Complement of Independent Events are IndependentComplement of Independent Events are Independent Let $E$ and $F$ be independent events. Let $F^c$ be the complement of $F$. Prove that $E$ and $F^c$ are independent as well. Solution. Note that $E\cap F$ and $E \cap F^c$ are disjoint and $E = (E \cap F) \cup (E \cap F^c)$. It follows that \[P(E) = P(E \cap F) + P(E […]
  • Jewelry Company Quality Test Failure ProbabilityJewelry Company Quality Test Failure Probability A jewelry company requires for its products to pass three tests before they are sold at stores. For gold rings, 90 % passes the first test, 85 % passes the second test, and 80 % passes the third test. If a product fails any test, the product is thrown away and it will not take the […]
  • What is the Probability that All Coins Land Heads When Four Coins are Tossed If…?What is the Probability that All Coins Land Heads When Four Coins are Tossed If…? Four fair coins are tossed. (1) What is the probability that all coins land heads? (2) What is the probability that all coins land heads if the first coin is heads? (3) What is the probability that all coins land heads if at least one coin lands […]
  • Independent Events of Playing CardsIndependent Events of Playing Cards A card is chosen randomly from a deck of the standard 52 playing cards. Let $E$ be the event that the selected card is a king and let $F$ be the event that it is a heart. Prove or disprove that the events $E$ and $F$ are independent. Definition of Independence Events […]
  • Independent and Dependent Events of Three Coins TossingIndependent and Dependent Events of Three Coins Tossing Suppose that three fair coins are tossed. Let $H_1$ be the event that the first coin lands heads and let $H_2$ be the event that the second coin lands heads. Also, let $E$ be the event that exactly two coins lands heads in a row. For each pair of these events, determine whether […]
  • Probability of Having Lung Cancer For SmokersProbability of Having Lung Cancer For Smokers Let $C$ be the event that a randomly chosen person has lung cancer. Let $S$ be the event of a person being a smoker. Suppose that 10% of the population has lung cancer and 20% of the population are smokers. Also, suppose that we know that 70% of all people who have lung cancer […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Probability
Probability problems
Complement of Independent Events are Independent

Let $E$ and $F$ be independent events. Let $F^c$ be the complement of $F$. Prove that $E$ and $F^c$ are...

Close