## Problem 725

Prove that if $R$ is a commutative ring and $\frakN(R)$ is its nilradical, then the zero is the only nilpotent element of $R/\frakN(R)$. That is, show that $\frakN(R/\frakN(R))=0$.

## Problem 724

Let $R$ be a principal ideal domain. Let $a\in R$ be a nonzero, non-unit element. Show that the following are equivalent.

(1) The ideal $(a)$ generated by $a$ is maximal.
(2) The ideal $(a)$ is prime.
(3) The element $a$ is irreducible.

## Problem 723

Let $R$ be a finite commutative ring with identity $1$. Prove that every prime ideal of $R$ is a maximal ideal of $R$.

## Problem 722

Let $T: \R^n \to \R^m$ be a linear transformation.
Suppose that the nullity of $T$ is zero.

If $\{\mathbf{x}_1, \mathbf{x}_2,\dots, \mathbf{x}_k\}$ is a linearly independent subset of $\R^n$, then show that $\{T(\mathbf{x}_1), T(\mathbf{x}_2), \dots, T(\mathbf{x}_k) \}$ is a linearly independent subset of $\R^m$.

## Problem 721

Given any constants $a,b,c$ where $a\neq 0$, find all values of $x$ such that the matrix $A$ is invertible if
$A= \begin{bmatrix} 1 & 0 & c \\ 0 & a & -b \\ -1/a & x & x^{2} \end{bmatrix} .$

## Problem 720

Find all eigenvalues and corresponding eigenvectors for the matrix $A$ if
$A= \begin{bmatrix} 2 & -3 & 0 \\ 2 & -5 & 0 \\ 0 & 0 & 3 \end{bmatrix} .$

## Problem 719

Let $A$ be the matrix given by
$A= \begin{bmatrix} -2 & 0 & 1 \\ -5 & 3 & a \\ 4 & -2 & -1 \end{bmatrix}$ for some variable $a$. Find all values of $a$ which will guarantee that $A$ has eigenvalues $0$, $3$, and $-3$.

## Problem 718

Let
$A= \begin{bmatrix} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \end{bmatrix} .$ Notice that $A$ contains every integer from $1$ to $9$ and that the sums of each row, column, and diagonal of $A$ are equal. Such a grid is sometimes called a magic square.

Compute the determinant of $A$.

## Problem 717

Define two functions $T:\R^{2}\to\R^{2}$ and $S:\R^{2}\to\R^{2}$ by
$T\left( \begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} 2x+y \\ 0 \end{bmatrix} ,\; S\left( \begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} x+y \\ xy \end{bmatrix} .$ Determine whether $T$, $S$, and the composite $S\circ T$ are linear transformations.

## Problem 716

Using Gram-Schmidt orthogonalization, find an orthogonal basis for the span of the vectors $\mathbf{w}_{1},\mathbf{w}_{2}\in\R^{3}$ if
$\mathbf{w}_{1} = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} ,\quad \mathbf{w}_{2} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} .$

## Problem 715

Let
$\mathbf{v}_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} ,\; \mathbf{v}_{2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} .$ Let $V=\Span(\mathbf{v}_{1},\mathbf{v}_{2})$. Do $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ form an orthonormal basis for $V$?

If not, then find an orthonormal basis for $V$.

## Problem 714

Let $W$ be the set of $3\times 3$ skew-symmetric matrices. Show that $W$ is a subspace of the vector space $V$ of all $3\times 3$ matrices. Then, exhibit a spanning set for $W$.

## Problem 713

Determine bases for $\calN(A)$ and $\calN(A^{T}A)$ when
$A= \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix} .$ Then, determine the ranks and nullities of the matrices $A$ and $A^{\trans}A$.

## Problem 712

Let $A$ be an $m \times n$ matrix.
Suppose that the nullspace of $A$ is a plane in $\R^3$ and the range is spanned by a nonzero vector $\mathbf{v}$ in $\R^5$. Determine $m$ and $n$. Also, find the rank and nullity of $A$.

## Problem 711

Using the axiom of a vector space, prove the following properties.
Let $V$ be a vector space over $\R$. Let $u, v, w\in V$.

(a) If $u+v=u+w$, then $v=w$.

(b) If $v+u=w+u$, then $v=w$.

(c) The zero vector $\mathbf{0}$ is unique.

(d) For each $v\in V$, the additive inverse $-v$ is unique.

(e) $0v=\mathbf{0}$ for every $v\in V$, where $0\in\R$ is the zero scalar.

(f) $a\mathbf{0}=\mathbf{0}$ for every scalar $a$.

(g) If $av=\mathbf{0}$, then $a=0$ or $v=\mathbf{0}$.

(h) $(-1)v=-v$.

The first two properties are called the cancellation law.

## Problem 710

Find a basis for $\Span(S)$ where $S= \left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} , \begin{bmatrix} -1 \\ -2 \\ -1 \end{bmatrix} , \begin{bmatrix} 2 \\ 6 \\ -2 \end{bmatrix} , \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} \right\}$.

## Problem 709

Let $S=\{\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{3},\mathbf{v}_{4},\mathbf{v}_{5}\}$ where
$\mathbf{v}_{1}= \begin{bmatrix} 1 \\ 2 \\ 2 \\ -1 \end{bmatrix} ,\;\mathbf{v}_{2}= \begin{bmatrix} 1 \\ 3 \\ 1 \\ 1 \end{bmatrix} ,\;\mathbf{v}_{3}= \begin{bmatrix} 1 \\ 5 \\ -1 \\ 5 \end{bmatrix} ,\;\mathbf{v}_{4}= \begin{bmatrix} 1 \\ 1 \\ 4 \\ -1 \end{bmatrix} ,\;\mathbf{v}_{5}= \begin{bmatrix} 2 \\ 7 \\ 0 \\ 2 \end{bmatrix} .$ Find a basis for the span $\Span(S)$.

## Problem 708

Let $A=\begin{bmatrix} 2 & 4 & 6 & 8 \\ 1 &3 & 0 & 5 \\ 1 & 1 & 6 & 3 \end{bmatrix}$.

(a) Find a basis for the nullspace of $A$.

(b) Find a basis for the row space of $A$.

(c) Find a basis for the range of $A$ that consists of column vectors of $A$.

(d) For each column vector which is not a basis vector that you obtained in part (c), express it as a linear combination of the basis vectors for the range of $A$.

## Problem 707

Suppose that a set of vectors $S_1=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a spanning set of a subspace $V$ in $\R^3$. Is it possible that $S_2=\{\mathbf{v}_1\}$ is a spanning set for $V$?

## Problem 706

Suppose that a set of vectors $S_1=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a spanning set of a subspace $V$ in $\R^5$. If $\mathbf{v}_4$ is another vector in $V$, then is the set
$S_2=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ still a spanning set for $V$? If so, prove it. Otherwise, give a counterexample.