Solve the System of Linear Equations and Give the Vector Form for the General Solution

Problem 296

Solve the following system of linear equations and give the vector form for the general solution.
\begin{align*}
x_1 -x_3 -2x_5&=1 \\
x_2+3x_3-x_5 &=2 \\
2x_1 -2x_3 +x_4 -3x_5 &= 0
\end{align*}

(The Ohio State University, linear algebra midterm exam problem)
 
Read solution

LoadingAdd to solve later

The Possibilities For the Number of Solutions of Systems of Linear Equations that Have More Equations than Unknowns

Problem 295

Determine all possibilities for the number of solutions of each of the system of linear equations described below.

(a) A system of $5$ equations in $3$ unknowns and it has $x_1=0, x_2=-3, x_3=1$ as a solution.

(b) A homogeneous system of $5$ equations in $4$ unknowns and the rank of the system is $4$.
 

(The Ohio State University, Linear Algebra Midterm Exam Problem)
Read solution

LoadingAdd to solve later

Quiz 4: Inverse Matrix/ Nonsingular Matrix Satisfying a Relation

Problem 289

(a) Find the inverse matrix of
\[A=\begin{bmatrix}
1 & 0 & 1 \\
1 &0 &0 \\
2 & 1 & 1
\end{bmatrix}\] if it exists. If you think there is no inverse matrix of $A$, then give a reason.

(b) Find a nonsingular $2\times 2$ matrix $A$ such that
\[A^3=A^2B-3A^2,\] where
\[B=\begin{bmatrix}
4 & 1\\
2& 6
\end{bmatrix}.\] Verify that the matrix $A$ you obtained is actually a nonsingular matrix.

(The Ohio State University, Linear Algebra Midterm Exam Problem)
 
Read solution

LoadingAdd to solve later

Summary: Possibilities for the Solution Set of a System of Linear Equations

Problem 288

In this post, we summarize theorems about the possibilities for the solution set of a system of linear equations and solve the following problems.

Determine all possibilities for the solution set of the system of linear equations described below.

(a) A homogeneous system of $3$ equations in $5$ unknowns.

(b) A homogeneous system of $5$ equations in $4$ unknowns.

(c) A system of $5$ equations in $4$ unknowns.

(d) A system of $2$ equations in $3$ unknowns that has $x_1=1, x_2=-5, x_3=0$ as a solution.

(e) A homogeneous system of $4$ equations in $4$ unknowns.

(f) A homogeneous system of $3$ equations in $4$ unknowns.

(g) A homogeneous system that has $x_1=3, x_2=-2, x_3=1$ as a solution.

(h) A homogeneous system of $5$ equations in $3$ unknowns and the rank of the system is $3$.

(i) A system of $3$ equations in $2$ unknowns and the rank of the system is $2$.

(j) A homogeneous system of $4$ equations in $3$ unknowns and the rank of the system is $2$.
 
Read solution

LoadingAdd to solve later

Basis For Subspace Consisting of Matrices Commute With a Given Diagonal Matrix

Problem 287

Let $V$ be the vector space of all $3\times 3$ real matrices.
Let $A$ be the matrix given below and we define
\[W=\{M\in V \mid AM=MA\}.\] That is, $W$ consists of matrices that commute with $A$.
Then $W$ is a subspace of $V$.

Determine which matrices are in the subspace $W$ and find the dimension of $W$.

(a) \[A=\begin{bmatrix}
a & 0 & 0 \\
0 &b &0 \\
0 & 0 & c
\end{bmatrix},\] where $a, b, c$ are distinct real numbers.

(b) \[A=\begin{bmatrix}
a & 0 & 0 \\
0 &a &0 \\
0 & 0 & b
\end{bmatrix},\] where $a, b$ are distinct real numbers.

 
Read solution

LoadingAdd to solve later

Linearly Independent vectors $\mathbf{v}_1, \mathbf{v}_2$ and Linearly Independent Vectors $A\mathbf{v}_1, A\mathbf{v}_2$ for a Nonsingular Matrix

Problem 284

Let $\mathbf{v}_1$ and $\mathbf{v}_2$ be $2$-dimensional vectors and let $A$ be a $2\times 2$ matrix.

(a) Show that if $\mathbf{v}_1, \mathbf{v}_2$ are linearly dependent vectors, then the vectors $A\mathbf{v}_1, A\mathbf{v}_2$ are also linearly dependent.

(b) If $\mathbf{v}_1, \mathbf{v}_2$ are linearly independent vectors, can we conclude that the vectors $A\mathbf{v}_1, A\mathbf{v}_2$ are also linearly independent?

(c) If $\mathbf{v}_1, \mathbf{v}_2$ are linearly independent vectors and $A$ is nonsingular, then show that the vectors $A\mathbf{v}_1, A\mathbf{v}_2$ are also linearly independent.

 
Read solution

LoadingAdd to solve later

The Center of the Heisenberg Group Over a Field $F$ is Isomorphic to the Additive Group $F$

Problem 283

Let $F$ be a field and let
\[H(F)=\left\{\, \begin{bmatrix}
1 & a & b \\
0 &1 &c \\
0 & 0 & 1
\end{bmatrix} \quad \middle| \quad \text{ for any} a,b,c\in F\, \right\}\] be the Heisenberg group over $F$.
(The group operation of the Heisenberg group is matrix multiplication.)

Determine which matrices lie in the center of $H(F)$ and prove that the center $Z\big(H(F)\big)$ is isomorphic to the additive group $F$.

 
Read solution

LoadingAdd to solve later

Dual Vector Space and Dual Basis, Some Equality

Problem 282

Let $V$ be a finite dimensional vector space over a field $k$ and let $V^*=\Hom(V, k)$ be the dual vector space of $V$.
Let $\{v_i\}_{i=1}^n$ be a basis of $V$ and let $\{v^i\}_{i=1}^n$ be the dual basis of $V^*$. Then prove that
\[x=\sum_{i=1}^nv^i(x)v_i\] for any vector $x\in V$.

 
Read solution

LoadingAdd to solve later

Quiz 3. Condition that Vectors are Linearly Dependent/ Orthogonal Vectors are Linearly Independent

Problem 281

(a) For what value(s) of $a$ is the following set $S$ linearly dependent?
\[ S=\left \{\,\begin{bmatrix}
1 \\
2 \\
3 \\
a
\end{bmatrix}, \begin{bmatrix}
a \\
0 \\
-1 \\
2
\end{bmatrix}, \begin{bmatrix}
0 \\
0 \\
a^2 \\
7
\end{bmatrix}, \begin{bmatrix}
1 \\
a \\
1 \\
1
\end{bmatrix}, \begin{bmatrix}
2 \\
-2 \\
3 \\
a^3
\end{bmatrix} \, \right\}.\]

(b) Let $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a set of nonzero vectors in $\R^m$ such that the dot product
\[\mathbf{v}_i\cdot \mathbf{v}_j=0\] when $i\neq j$.
Prove that the set is linearly independent.

 
Read solution

LoadingAdd to solve later

Find a Nonsingular Matrix Satisfying Some Relation

Problem 280

Determine whether there exists a nonsingular matrix $A$ if
\[A^2=AB+2A,\] where $B$ is the following matrix.
If such a nonsingular matrix $A$ exists, find the inverse matrix $A^{-1}$.

(a) \[B=\begin{bmatrix}
-1 & 1 & -1 \\
0 &-1 &0 \\
1 & 2 & -2
\end{bmatrix}\]

(b) \[B=\begin{bmatrix}
-1 & 1 & -1 \\
0 &-1 &0 \\
2 & 1 & -4
\end{bmatrix}.\]

 
Read solution

LoadingAdd to solve later

Determine Conditions on Scalars so that the Set of Vectors is Linearly Dependent

Problem 279

Determine conditions on the scalars $a, b$ so that the following set $S$ of vectors is linearly dependent.
\begin{align*}
S=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\},
\end{align*}
where
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
3 \\
1
\end{bmatrix}, \mathbf{v}_2=\begin{bmatrix}
1 \\
a \\
4
\end{bmatrix}, \mathbf{v}_3=\begin{bmatrix}
0 \\
2 \\
b
\end{bmatrix}.\]  
Read solution

LoadingAdd to solve later

Determine Linearly Independent or Linearly Dependent. Express as a Linear Combination

Problem 277

Determine whether the following set of vectors is linearly independent or linearly dependent. If the set is linearly dependent, express one vector in the set as a linear combination of the others.
\[\left\{\, \begin{bmatrix}
1 \\
0 \\
-1 \\
0
\end{bmatrix}, \begin{bmatrix}
1 \\
2 \\
3 \\
4
\end{bmatrix}, \begin{bmatrix}
-1 \\
-2 \\
0 \\
1
\end{bmatrix},
\begin{bmatrix}
-2 \\
-2 \\
7 \\
11
\end{bmatrix}\, \right\}.\]

 
Read solution

LoadingAdd to solve later