Determine Whether Trigonometry Functions $\sin^2(x), \cos^2(x), 1$ are Linearly Independent or Dependent

Problem 365

Let $f(x)=\sin^2(x)$, $g(x)=\cos^2(x)$, and $h(x)=1$. These are vectors in $C[-1, 1]$.
Determine whether the set $\{f(x), \, g(x), \, h(x)\}$ is linearly dependent or linearly independent.

(The Ohio State University, Linear Algebra Midterm Exam Problem)
 
Read solution

LoadingAdd to solve later

True or False Problems of Vector Spaces and Linear Transformations

Problem 364

These are True or False problems.
For each of the following statements, determine if it contains a wrong information or not.

  1. Let $A$ be a $5\times 3$ matrix. Then the range of $A$ is a subspace in $\R^3$.
  2. The function $f(x)=x^2+1$ is not in the vector space $C[-1,1]$ because $f(0)=1\neq 0$.
  3. Since we have $\sin(x+y)=\sin(x)+\sin(y)$, the function $\sin(x)$ is a linear transformation.
  4. The set
    \[\left\{\, \begin{bmatrix}
    1 \\
    0 \\
    0
    \end{bmatrix}, \begin{bmatrix}
    0 \\
    1 \\
    1
    \end{bmatrix} \,\right\}\] is an orthonormal set.

(Linear Algebra Exam Problem, The Ohio State University)

 
Read solution

LoadingAdd to solve later

Quiz 11. Find Eigenvalues and Eigenvectors/ Properties of Determinants

Problem 363

(a) Find all the eigenvalues and eigenvectors of the matrix
\[A=\begin{bmatrix}
3 & -2\\
6& -4
\end{bmatrix}.\]

(b) Let
\[A=\begin{bmatrix}
1 & 0 & 3 \\
4 &5 &6 \\
7 & 0 & 9
\end{bmatrix} \text{ and } B=\begin{bmatrix}
2 & 0 & 0 \\
0 & 3 &0 \\
0 & 0 & 4
\end{bmatrix}.\] Then find the value of
\[\det(A^2B^{-1}A^{-2}B^2).\] (For part (b) without computation, you may assume that $A$ and $B$ are invertible matrices.)

 
Read solution

LoadingAdd to solve later

Quiz 10. Find Orthogonal Basis / Find Value of Linear Transformation

Problem 356

(a) Let $S=\{\mathbf{v}_1, \mathbf{v}_2\}$ be the set of the following vectors in $\R^4$.
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
0 \\
1 \\
0
\end{bmatrix} \text{ and } \mathbf{v}_2=\begin{bmatrix}
0 \\
1 \\
1 \\
0
\end{bmatrix}.\] Find an orthogonal basis of the subspace $\Span(S)$ of $\R^4$.

 
(b) Let $T:\R^2 \to \R^3$ be a linear transformation such that
\[T(\mathbf{e}_1)=\mathbf{u}_1 \text{ and } T(\mathbf{e}_2)=\mathbf{u}_2,\] where $\{\mathbf{e}_1, \mathbf{e}_2\}$ is the standard unit vectors of $\R^2$ and
\[\mathbf{u}_1=\begin{bmatrix}
5 \\
1 \\
2
\end{bmatrix} \text{ and } \mathbf{u}_2=\begin{bmatrix}
8 \\
2 \\
6
\end{bmatrix}.\] Then find
\[T\left(\, \begin{bmatrix}
3 \\
-2
\end{bmatrix} \,\right).\]

 
Read solution

LoadingAdd to solve later

Find a General Formula of a Linear Transformation From $\R^2$ to $\R^3$

Problem 353

Suppose that $T: \R^2 \to \R^3$ is a linear transformation satisfying
\[T\left(\, \begin{bmatrix}
1 \\
2
\end{bmatrix}\,\right)=\begin{bmatrix}
3 \\
4 \\
5
\end{bmatrix} \text{ and } T\left(\, \begin{bmatrix}
0 \\
1
\end{bmatrix} \,\right)=\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}.\] Find a general formula for
\[T\left(\, \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} \,\right).\]

(The Ohio State University, Linear Algebra Math 2568 Exam Problem)

 
Read solution

LoadingAdd to solve later

Hyperplane in $n$-Dimensional Space Through Origin is a Subspace

Problem 352

A hyperplane in $n$-dimensional vector space $\R^n$ is defined to be the set of vectors
\[\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}\in \R^n\] satisfying the linear equation of the form
\[a_1x_1+a_2x_2+\cdots+a_nx_n=b,\] where $a_1, a_2, \dots, a_n$ (at least one of $a_1, a_2, \dots, a_n$ is nonzero) and $b$ are real numbers.
Here at least one of $a_1, a_2, \dots, a_n$ is nonzero.

Consider the hyperplane $P$ in $\R^n$ described by the linear equation
\[a_1x_1+a_2x_2+\cdots+a_nx_n=0,\] where $a_1, a_2, \dots, a_n$ are some fixed real numbers and not all of these are zero.
(The constant term $b$ is zero.)

Then prove that the hyperplane $P$ is a subspace of $R^{n}$ of dimension $n-1$.

 
Read solution

LoadingAdd to solve later

Coordinate Vectors and Dimension of Subspaces (Span)

Problem 350

Let $V$ be a vector space over $\R$ and let $B$ be a basis of $V$.
Let $S=\{v_1, v_2, v_3\}$ be a set of vectors in $V$. If the coordinate vectors of these vectors with respect to the basis $B$ is given as follows, then find the dimension of $V$ and the dimension of the span of $S$.
\[[v_1]_B=\begin{bmatrix}
1 \\
0 \\
0 \\
0
\end{bmatrix}, [v_2]_B=\begin{bmatrix}
0 \\
1 \\
0 \\
0
\end{bmatrix}, [v_3]_B=\begin{bmatrix}
1 \\
1 \\
0 \\
0
\end{bmatrix}.\]

 
Read solution

LoadingAdd to solve later

Quiz 9. Find a Basis of the Subspace Spanned by Four Matrices

Problem 349

Let $V$ be the vector space of all $2\times 2$ real matrices.
Let $S=\{A_1, A_2, A_3, A_4\}$, where
\[A_1=\begin{bmatrix}
1 & 2\\
-1& 3
\end{bmatrix}, A_2=\begin{bmatrix}
0 & -1\\
1& 4
\end{bmatrix}, A_3=\begin{bmatrix}
-1 & 0\\
1& -10
\end{bmatrix}, A_4=\begin{bmatrix}
3 & 7\\
-2& 6
\end{bmatrix}.\] Then find a basis for the span $\Span(S)$.

 
Read solution

LoadingAdd to solve later

Condition that a Matrix is Similar to the Companion Matrix of its Characteristic Polynomial

Problem 348

Let $A$ be an $n\times n$ complex matrix.
Let $p(x)=\det(xI-A)$ be the characteristic polynomial of $A$ and write it as
\[p(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0,\] where $a_i$ are real numbers.

Let $C$ be the companion matrix of the polynomial $p(x)$ given by
\[C=\begin{bmatrix}
0 & 0 & \dots & 0 &-a_0 \\
1 & 0 & \dots & 0 & -a_1 \\
0 & 1 & \dots & 0 & -a_2 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & \dots & 1 & -a_{n-1}
\end{bmatrix}=
[\mathbf{e}_2, \mathbf{e}_3, \dots, \mathbf{e}_n, -\mathbf{a}],\] where $\mathbf{e}_i$ is the unit vector in $\C^n$ whose $i$-th entry is $1$ and zero elsewhere, and the vector $\mathbf{a}$ is defined by
\[\mathbf{a}=\begin{bmatrix}
a_0 \\
a_1 \\
\vdots \\
a_{n-1}
\end{bmatrix}.\]

Then prove that the following two statements are equivalent.

  1. There exists a vector $\mathbf{v}\in \C^n$ such that
    \[\mathbf{v}, A\mathbf{v}, A^2\mathbf{v}, \dots, A^{n-1}\mathbf{v}\] form a basis of $\C^n$.
  2. There exists an invertible matrix $S$ such that $S^{-1}AS=C$.
    (Namely, $A$ is similar to the companion matrix of its characteristic polynomial.)

 
Read solution

LoadingAdd to solve later

Linearly Dependent if and only if a Vector Can be Written as a Linear Combination of Remaining Vectors

Problem 347

Let $V$ be a vector space over a scalar field $K$.
Let $S=\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be the set of vectors in $V$, where $n \geq 2$.

Then prove that the set $S$ is linearly dependent if and only if at least one of the vectors in $S$ can be written as a linear combination of remaining vectors in $S$.

 
Read solution

LoadingAdd to solve later