## Problem 342

Let $G$ be an abelian group and let $f: G\to \Z$ be a surjective group homomorphism.

Prove that we have an isomorphism of groups:
$G \cong \ker(f)\times \Z.$

## Problem 341

Let $H$ and $K$ be normal subgroups of a group $G$.
Suppose that $H < K$ and the quotient group $G/H$ is abelian.
Then prove that $G/K$ is also an abelian group.

## Problem 340

Let $G$ be an abelian group and let $N$ be a normal subgroup of $G$.
Then prove that the quotient group $G/N$ is also an abelian group.

## Problem 339

Let $\{\mathbf{v}_1, \mathbf{v}_2\}$ be a basis of the vector space $\R^2$, where
$\mathbf{v}_1=\begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ and } \mathbf{v}_2=\begin{bmatrix} 1 \\ -1 \end{bmatrix}.$ The action of a linear transformation $T:\R^2\to \R^3$ on the basis $\{\mathbf{v}_1, \mathbf{v}_2\}$ is given by
\begin{align*}
T(\mathbf{v}_1)=\begin{bmatrix}
2 \\
4 \\
6
\end{bmatrix} \text{ and } T(\mathbf{v}_2)=\begin{bmatrix}
0 \\
8 \\
10
\end{bmatrix}.
\end{align*}

Find the formula of $T(\mathbf{x})$, where
$\mathbf{x}=\begin{bmatrix} x \\ y \end{bmatrix}\in \R^2.$

## Problem 338

Each of the following sets are not a subspace of the specified vector space. For each set, give a reason why it is not a subspace.
(1) $S_1=\left \{\, \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \R^3 \quad \middle | \quad x_1\geq 0 \,\right \}$ in the vector space $\R^3$.

(2) $S_2=\left \{\, \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \R^3 \quad \middle | \quad x_1-4x_2+5x_3=2 \,\right \}$ in the vector space $\R^3$.

(3) $S_3=\left \{\, \begin{bmatrix} x \\ y \end{bmatrix}\in \R^2 \quad \middle | \quad y=x^2 \quad \,\right \}$ in the vector space $\R^2$.

(4) Let $P_4$ be the vector space of all polynomials of degree $4$ or less with real coefficients.
$S_4=\{ f(x)\in P_4 \mid f(1) \text{ is an integer}\}$ in the vector space $P_4$.

(5) $S_5=\{ f(x)\in P_4 \mid f(1) \text{ is a rational number}\}$ in the vector space $P_4$.

(6) Let $M_{2 \times 2}$ be the vector space of all $2\times 2$ real matrices.
$S_6=\{ A\in M_{2\times 2} \mid \det(A) \neq 0\}$ in the vector space $M_{2\times 2}$.

(7) $S_7=\{ A\in M_{2\times 2} \mid \det(A)=0\}$ in the vector space $M_{2\times 2}$.

(Linear Algebra Exam Problem, the Ohio State University)

(8) Let $C[-1, 1]$ be the vector space of all real continuous functions defined on the interval $[a, b]$.
$S_8=\{ f(x)\in C[-2,2] \mid f(-1)f(1)=0\}$ in the vector space $C[-2, 2]$.

(9) $S_9=\{ f(x) \in C[-1, 1] \mid f(x)\geq 0 \text{ for all } -1\leq x \leq 1\}$ in the vector space $C[-1, 1]$.

(10) Let $C^2[a, b]$ be the vector space of all real-valued functions $f(x)$ defined on $[a, b]$, where $f(x), f'(x)$, and $f^{\prime\prime}(x)$ are continuous on $[a, b]$. Here $f'(x), f^{\prime\prime}(x)$ are the first and second derivative of $f(x)$.
$S_{10}=\{ f(x) \in C^2[-1, 1] \mid f^{\prime\prime}(x)+f(x)=\sin(x) \text{ for all } -1\leq x \leq 1\}$ in the vector space $C[-1, 1]$.

(11) Let $S_{11}$ be the set of real polynomials of degree exactly $k$, where $k \geq 1$ is an integer, in the vector space $P_k$.

(12) Let $V$ be a vector space and $W \subset V$ a vector subspace. Define the subset $S_{12}$ to be the complement of $W$,
$V \setminus W = \{ \mathbf{v} \in V \mid \mathbf{v} \not\in W \}.$

## Problem 337

Let $A, B$ be complex $2\times 2$ matrices satisfying the relation
$A=AB-BA.$

Prove that $A^2=O$, where $O$ is the $2\times 2$ zero matrix.

## Problem 336

A complex square ($n\times n$) matrix $A$ is called normal if
$A^* A=A A^*,$ where $A^*$ denotes the conjugate transpose of $A$, that is $A^*=\bar{A}^{\trans}$.
A matrix $A$ is said to be nilpotent if there exists a positive integer $k$ such that $A^k$ is the zero matrix.

(a) Prove that if $A$ is both normal and nilpotent, then $A$ is the zero matrix.
You may use the fact that every normal matrix is diagonalizable.

(b) Give a proof of (a) without referring to eigenvalues and diagonalization.

(c) Let $A, B$ be $n\times n$ complex matrices. Prove that if $A$ is normal and $B$ is nilpotent such that $A+B=I$, then $A=I$, where $I$ is the $n\times n$ identity matrix.

## Problem 335

Consider the cubic polynomial $f(x)=x^3-x+1$ in $\Q[x]$.
Let $\alpha$ be any real root of $f(x)$.
Then prove that $\sqrt{2}$ can not be written as a linear combination of $1, \alpha, \alpha^2$ with coefficients in $\Q$.

## Problem 334

Prove that the polynomial
$f(x)=x^3+9x+6$ is irreducible over the field of rational numbers $\Q$.
Let $\theta$ be a root of $f(x)$.
Then find the inverse of $1+\theta$ in the field $\Q(\theta)$.

## Problem 333

Let $R$ be an integral domain and let $S=R[t]$ be the polynomial ring in $t$ over $R$. Let $n$ be a positive integer.

Prove that the polynomial
$f(x)=x^n-t$ in the ring $S[x]$ is irreducible in $S[x]$.

## Problem 332

Let $G=\GL(n, \R)$ be the general linear group of degree $n$, that is, the group of all $n\times n$ invertible matrices.
Consider the subset of $G$ defined by
$\SL(n, \R)=\{X\in \GL(n,\R) \mid \det(X)=1\}.$ Prove that $\SL(n, \R)$ is a subgroup of $G$. Furthermore, prove that $\SL(n,\R)$ is a normal subgroup of $G$.
The subgroup $\SL(n,\R)$ is called special linear group

## Beautiful Formulas for pi=3.14…

The number $\pi$ is defined a s the ratio of a circle’s circumference $C$ to its diameter $d$:
$\pi=\frac{C}{d}.$

$\pi$ in decimal starts with 3.14… and never end.

I will show you several beautiful formulas for $\pi$.

## Problem 330

Let $V$ be the vector space of all $n\times n$ real matrices.
Let us fix a matrix $A\in V$.
Define a map $T: V\to V$ by
$T(X)=AX-XA$ for each $X\in V$.

(a) Prove that $T:V\to V$ is a linear transformation.

(b) Let $B$ be a basis of $V$. Let $P$ be the matrix representation of $T$ with respect to $B$. Find the determinant of $P$.

## Problem 329

Let $n$ be a positive integer. Let $T:\R^n \to \R$ be a non-zero linear transformation.
Prove the followings.

(a) The nullity of $T$ is $n-1$. That is, the dimension of the nullspace of $T$ is $n-1$.

(b) Let $B=\{\mathbf{v}_1, \cdots, \mathbf{v}_{n-1}\}$ be a basis of the nullspace $\calN(T)$ of $T$.
Let $\mathbf{w}$ be the $n$-dimensional vector that is not in $\calN(T)$. Then
$B’=\{\mathbf{v}_1, \cdots, \mathbf{v}_{n-1}, \mathbf{w}\}$ is a basis of $\R^n$.

(c) Each vector $\mathbf{u}\in \R^n$ can be expressed as
$\mathbf{u}=\mathbf{v}+\frac{T(\mathbf{u})}{T(\mathbf{w})}\mathbf{w}$ for some vector $\mathbf{v}\in \calN(T)$.

## Problem 328

(a) Let $C[-1,1]$ be the vector space over $\R$ of all real-valued continuous functions defined on the interval $[-1, 1]$.
Consider the subset $F$ of $C[-1, 1]$ defined by
$F=\{ f(x)\in C[-1, 1] \mid f(0) \text{ is an integer}\}.$ Prove or disprove that $F$ is a subspace of $C[-1, 1]$.

(b) Let $n$ be a positive integer.
An $n\times n$ matrix $A$ is called skew-symmetric if $A^{\trans}=-A$.
Let $M_{n\times n}$ be the vector space over $\R$ of all $n\times n$ real matrices.
Consider the subset $W$ of $M_{n\times n}$ defined by
$W=\{A\in M_{n\times n} \mid A \text{ is skew-symmetric}\}.$ Prove or disprove that $W$ is a subspace of $M_{n\times n}$.

## Problem 327

Let $A$ be the matrix for a linear transformation $T:\R^n \to \R^n$ with respect to the standard basis of $\R^n$.
We assume that $A$ is idempotent, that is, $A^2=A$.
Then prove that
$\R^n=\im(T) \oplus \ker(T).$

## Problem 326

Prove that if $G$ is a finite group of even order, then the number of elements of $G$ of order $2$ is odd.

## Problem 325

Let $G$ be a group and define a map $f:G\to G$ by $f(a)=a^2$ for each $a\in G$.
Then prove that $G$ is an abelian group if and only if the map $f$ is a group homomorphism.

## Problem 324

Let $T$ be the linear transformation from the $3$-dimensional vector space $\R^3$ to $\R^3$ itself satisfying the following relations.
\begin{align*}
T\left(\, \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} \,\right)
=\begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}, \qquad T\left(\, \begin{bmatrix}
2 \\
3 \\
5
\end{bmatrix} \, \right) =
\begin{bmatrix}
0 \\
2 \\
-1
T \left( \, \begin{bmatrix}
0 \\
1 \\
2
\end{bmatrix} \, \right)=
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}.
\end{align*}
Then for any vector
$\mathbf{x}=\begin{bmatrix} x \\ y \\ z \end{bmatrix}\in \R^3,$ find the formula for $T(\mathbf{x})$.

## Problem 323

Suppose that $A$ is $2\times 2$ matrix that has eigenvalues $-1$ and $3$.
Then for each positive integer $n$ find $a_n$ and $b_n$ such that
$A^{n+1}=a_nA+b_nI,$ where $I$ is the $2\times 2$ identity matrix.