Matrix Representation of a Linear Transformation of Subspace of Sequences Satisfying Recurrence Relation

Problem 309

Let $V$ be a real vector space of all real sequences
\[(a_i)_{i=1}^{\infty}=(a_1, a_2, \dots).\] Let $U$ be the subspace of $V$ consisting of all real sequences that satisfy the linear recurrence relation $a_{k+2}-5a_{k+1}+3a_{k}=0$ for $k=1, 2, \dots$.

(a) Let
\begin{align*}
\mathbf{u}_1&=(1, 0, -3, -15, -66, \dots)\\
\mathbf{u}_2&=(0, 1, 5, 22, 95, \dots)
\end{align*}
be vectors in $U$. Prove that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is a basis of $U$ and conclude that the dimension of $U$ is $2$.


(b) Let $T$ be a map from $U$ to $U$ defined by
\[T\big((a_1, a_2, \dots)\big)=(a_2, a_3, \dots). \] Verify that the map $T$ actually sends a vector $(a_i)_{i=1}^{\infty}\in V$ to a vector $T\big((a_i)_{i=1}^{\infty}\big)$ in $U$, and show that $T$ is a linear transformation from $U$ to $U$.


(c) With respect to the basis $\{\mathbf{u}_1, \mathbf{u}_2\}$ obtained in (a), find the matrix representation $A$ of the linear transformation $T:U \to U$ from (b).

Read solution

LoadingAdd to solve later

Torsion Subgroup of an Abelian Group, Quotient is a Torsion-Free Abelian Group

Problem 307

Let $A$ be an abelian group and let $T(A)$ denote the set of elements of $A$ that have finite order.

(a) Prove that $T(A)$ is a subgroup of $A$.

(The subgroup $T(A)$ is called the torsion subgroup of the abelian group $A$ and elements of $T(A)$ are called torsion elements.)

(b) Prove that the quotient group $G=A/T(A)$ is a torsion-free abelian group. That is, the only element of $G$ that has finite order is the identity element.

 
Read solution

LoadingAdd to solve later

Quiz 5: Example and Non-Example of Subspaces in 3-Dimensional Space

Problem 304

Problem 1 Let $W$ be the subset of the $3$-dimensional vector space $\R^3$ defined by
\[W=\left\{ \mathbf{x}=\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}\in \R^3 \quad \middle| \quad 2x_1x_2=x_3 \right\}.\]

(a) Which of the following vectors are in the subset $W$? Choose all vectors that belong to $W$.
\[(1) \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix} \qquad(2) \begin{bmatrix}
1 \\
2 \\
2
\end{bmatrix} \qquad(3)\begin{bmatrix}
3 \\
0 \\
0
\end{bmatrix} \qquad(4) \begin{bmatrix}
0 \\
0
\end{bmatrix} \qquad(5) \begin{bmatrix}
1 & 2 & 4 \\
1 &2 &4
\end{bmatrix} \qquad(6) \begin{bmatrix}
1 \\
-1 \\
-2
\end{bmatrix}.\]

(b) Determine whether $W$ is a subspace of $\R^3$ or not.
 


Problem 2 Let $W$ be the subset of $\R^3$ defined by
\[W=\left\{ \mathbf{x}=\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} \in \R^3 \quad \middle| \quad x_1=3x_2 \text{ and } x_3=0 \right\}.\] Determine whether the subset $W$ is a subspace of $\R^3$ or not.

 
Read solution

LoadingAdd to solve later

Given a Spanning Set of the Null Space of a Matrix, Find the Rank

Problem 303

Let $A$ be a real $7\times 3$ matrix such that its null space is spanned by the vectors
\[\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}, \begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix}, \text{ and } \begin{bmatrix}
1 \\
-1 \\
0
\end{bmatrix}.\] Then find the rank of the matrix $A$.

(Purdue University, Linear Algebra Final Exam Problem)
 
Read solution

LoadingAdd to solve later

Generators of the Augmentation Ideal in a Group Ring

Problem 302

Let $R$ be a commutative ring with $1$ and let $G$ be a finite group with identity element $e$. Let $RG$ be the group ring. Then the map $\epsilon: RG \to R$ defined by
\[\epsilon(\sum_{i=1}^na_i g_i)=\sum_{i=1}^na_i,\] where $a_i\in R$ and $G=\{g_i\}_{i=1}^n$, is a ring homomorphism, called the augmentation map and the kernel of $\epsilon$ is called the augmentation ideal.

(a) Prove that the augmentation ideal in the group ring $RG$ is generated by $\{g-e \mid g\in G\}$.

(b) Prove that if $G=\langle g\rangle$ is a finite cyclic group generated by $g$, then the augmentation ideal is generated by $g-e$.
 
Read solution

LoadingAdd to solve later

Solve a System by the Inverse Matrix and Compute $A^{2017}\mathbf{x}$

Problem 300

Let $A$ be the coefficient matrix of the system of linear equations
\begin{align*}
-x_1-2x_2&=1\\
2x_1+3x_2&=-1.
\end{align*}

(a) Solve the system by finding the inverse matrix $A^{-1}$.

(b) Let $\mathbf{x}=\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}$ be the solution of the system obtained in part (a).
Calculate and simplify
\[A^{2017}\mathbf{x}.\]

(The Ohio State University, Linear Algebra Midterm Exam Problem)
 
Read solution

LoadingAdd to solve later

Express a Vector as a Linear Combination of Given Three Vectors

Problem 298

Let
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
5 \\
-1
\end{bmatrix}, \mathbf{v}_2=\begin{bmatrix}
1 \\
4 \\
3
\end{bmatrix}, \mathbf{v}_3=\begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix}, \mathbf{b}=\begin{bmatrix}
2 \\
13 \\
6
\end{bmatrix}.\] Express the vector $\mathbf{b}$ as a linear combination of the vector $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

(The Ohio State University, Linear Algebra Midterm Exam Problem)
 
Read solution

LoadingAdd to solve later

Compute and Simplify the Matrix Expression Including Transpose and Inverse Matrices

Problem 297

Let $A, B, C$ be the following $3\times 3$ matrices.
\[A=\begin{bmatrix}
1 & 2 & 3 \\
4 &5 &6 \\
7 & 8 & 9
\end{bmatrix}, B=\begin{bmatrix}
1 & 0 & 1 \\
0 &3 &0 \\
1 & 0 & 5
\end{bmatrix}, C=\begin{bmatrix}
-1 & 0\ & 1 \\
0 &5 &6 \\
3 & 0 & 1
\end{bmatrix}.\] Then compute and simplify the following expression.
\[(A^{\trans}-B)^{\trans}+C(B^{-1}C)^{-1}.\]

(The Ohio State University, Linear Algebra Midterm Exam Problem)
 
Read solution

LoadingAdd to solve later

Solve the System of Linear Equations and Give the Vector Form for the General Solution

Problem 296

Solve the following system of linear equations and give the vector form for the general solution.
\begin{align*}
x_1 -x_3 -2x_5&=1 \\
x_2+3x_3-x_5 &=2 \\
2x_1 -2x_3 +x_4 -3x_5 &= 0
\end{align*}

(The Ohio State University, linear algebra midterm exam problem)
 
Read solution

LoadingAdd to solve later

The Possibilities For the Number of Solutions of Systems of Linear Equations that Have More Equations than Unknowns

Problem 295

Determine all possibilities for the number of solutions of each of the system of linear equations described below.

(a) A system of $5$ equations in $3$ unknowns and it has $x_1=0, x_2=-3, x_3=1$ as a solution.

(b) A homogeneous system of $5$ equations in $4$ unknowns and the rank of the system is $4$.
 

(The Ohio State University, Linear Algebra Midterm Exam Problem)
Read solution

LoadingAdd to solve later